21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated CCL19/ CCR7 Expression During the Disease Process of Primary Sjögren's Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary Sjögren's syndrome (pSS) is a common chronic autoimmune disease characterized by a high prevalence of autoantibodies and lymphocyte-mediated exocrine gland damage. To enhance our understanding of the mechanisms underlying the progression of the disease and to discover potential biomarkers for the early diagnosis of pSS, we applied RNA sequencing to compare the gene expression patterns in minor salivary glands between pSS patients and non-pSS. A total of 293 differentially expressed genes (DEGs) were detected in pSS vs. non-pSS (FDR < 0.05, fold changes > 2). Of these DEGs, 285 (97.26%) were up-regulated, with most being involved in immune system activation, especially in the formation of the immunological synapse. Significantly elevated CCL19/ CCR7 expression in the salivary gland was found to be related to anti-Sjögren's syndrome-related antigen A (SSA) antibody and IgG levels in pSS patients, which was further confirmed in a larger cohort. Up-regulated gene expression showed strong discriminatory accuracy in identifying pSS with area under the curve of 0.98 using receiver operating characteristic curve analysis. In conclusion, gene expression changes in pSS include strong markers of immunological activation and have good discriminatory power in identifying patients with pSS.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus.

          Rheumatoid arthritis is a chronic inflammatory disease with a substantial genetic component. Susceptibility to disease has been linked with a region on chromosome 2q. We tested single-nucleotide polymorphisms (SNPs) in and around 13 candidate genes within the previously linked chromosome 2q region for association with rheumatoid arthritis. We then performed fine mapping of the STAT1-STAT4 region in a total of 1620 case patients with established rheumatoid arthritis and 2635 controls, all from North America. Implicated SNPs were further tested in an independent case-control series of 1529 patients with early rheumatoid arthritis and 881 controls, all from Sweden, and in a total of 1039 case patients and 1248 controls from three series of patients with systemic lupus erythematosus. A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P=2.81x10(-7); odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P=0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P=1.87x10(-9); odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis. A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses. Copyright 2007 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sjögren syndrome.

            Sjögren syndrome (SjS) is a systemic autoimmune disease that primarily affects the exocrine glands (mainly the salivary and lacrimal glands) and results in the severe dryness of mucosal surfaces, principally in the mouth and eyes. This disease predominantly affects middle-aged women, but can also be observed in children, men and the elderly. The clinical presentation of SjS is heterogeneous and can vary from sicca symptoms to systemic disease (characterized by peri-epithelial lymphocytic infiltration of the affected tissue or the deposition of the immune complex) and lymphoma. The mechanism underlying the development of SjS is the destruction of the epithelium of the exocrine glands, as a consequence of abnormal B cell and T cell responses to the autoantigens Ro/SSA and La/SSB, among others. Diagnostic criteria for SjS include the detection of autoantibodies in patient serum and histological analysis of biopsied salivary gland tissue. Therapeutic approaches for SjS include both topical and systemic treatments to manage the sicca and systemic symptoms of disease. SjS is a serious disease with excess mortality, mainly related to the systemic involvement of disease and the development of lymphomas in some patients. Knowledge of SjS has progressed substantially, but this disease is still characterized by sicca symptoms, the systemic involvement of disease, lymphocytic infiltration to exocrine glands, the presence of anti-Ro/SSA and anti-La/SSB autoantibodies and the increased risk of lymphoma in patients with SjS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome.

              Gene expression analysis of target organs might help provide new insights into the pathogenesis of autoimmune diseases. We used global gene expression profiling of minor salivary glands to identify patterns of gene expression in patients with primary Sjögren's syndrome (pSS), a common and prototypic systemic autoimmune disease. Gene expression analysis allowed for differentiating most patients with pSS from controls. The expression of 23 genes in the IFN pathways, including two Toll-like receptors (TLR8 and TLR9), was significantly different between patients and controls. Furthermore, the increased expression of IFN-inducible genes, BAFF and IFN-induced transmembrane protein 1, was also demonstrated in ocular epithelial cells by quantitative RT-PCR. In vitro activation showed that these genes were effectively modulated by IFNs in salivary gland epithelial cells, the target cells of autoimmunity in pSS. The activation of IFN pathways led us to investigate whether plasmacytoid dendritic cells were recruited in salivary glands. These IFN-producing cells were detected by immunohistochemistry in all patients with pSS, whereas none was observed in controls. In conclusion, our results support the pathogenic interaction between the innate and adaptive immune system in pSS. The persistence of the IFN signature might be related to a vicious circle, in which the environment interacts with genetic factors to drive the stimulation of salivary TLRs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                24 April 2019
                2019
                : 10
                : 795
                Affiliations
                [1] 1Institute of Genomic Medicine, Wenzhou Medical University , Wenzhou, China
                [2] 2Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, China
                [3] 3Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute , Brisbane, QLD, Australia
                [4] 4Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, China
                Author notes

                Edited by: Marco Emilio Bianchi, Vita-Salute San Raffaele University, Italy

                Reviewed by: Biji T. Kurien, University of Oklahoma Health Sciences Center, United States; Umesh S. Deshmukh, Oklahoma Medical Research Foundation, United States

                *Correspondence: Xiaobing Wang gale820907@ 123456163.com

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2019.00795
                6491632
                31068931
                1417506d-66b5-4bfe-9863-cb1388230e49
                Copyright © 2019 Liu, Li, Pan, Xue, Jiang, Zhu, Jin, Fang, Zhu, Brown and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 December 2018
                : 26 March 2019
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 63, Pages: 13, Words: 8883
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Funded by: Natural Science Foundation of Zhejiang Province 10.13039/501100004731
                Categories
                Immunology
                Original Research

                Immunology
                primary sjögren's syndrome,rna-sequencing,gene expression,immunological synapse,ccl19/ccr7

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content646

                Cited by13

                Most referenced authors1,889