39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The inner structural Gag proteins and the envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) traffic independently to the plasma membrane, where they assemble the nascent virion. HIV-1 carries a relatively low number of glycoproteins in its membrane, and the mechanism of Env recruitment and virus incorporation is incompletely understood. We employed dual-color super-resolution microscopy visualizing Gag assembly sites and HIV-1 Env proteins in virus-producing and in Env expressing cells. Distinctive HIV-1 Gag assembly sites were readily detected and were associated with Env clusters that always extended beyond the actual Gag assembly site and often showed enrichment at the periphery and surrounding the assembly site. Formation of these Env clusters depended on the presence of other HIV-1 proteins and on the long cytoplasmic tail (CT) of Env. CT deletion, a matrix mutation affecting Env incorporation or Env expression in the absence of other HIV-1 proteins led to much smaller Env clusters, which were not enriched at viral assembly sites. These results show that Env is recruited to HIV-1 assembly sites in a CT-dependent manner, while Env(ΔCT) appears to be randomly incorporated. The observed Env accumulation surrounding Gag assemblies, with a lower density on the actual bud, could facilitate viral spread in vivo. Keeping Env molecules on the nascent virus low may be important for escape from the humoral immune response, while cell-cell contacts mediated by surrounding Env molecules could promote HIV-1 transmission through the virological synapse.

          Author Summary

          Newly formed HIV-1 particles assemble at the plasma membrane of virus producing cells. The inner structural protein Gag and the envelope glycoprotein Env, which are both essential components of infectious virus particles, traffic to the membrane via different pathways. Attached to the inner side of the membrane, Gag assembles into spherical particles that incorporate Env proteins in their surrounding lipid envelope. The mechanism of Env incorporation is incompletely understood, however. Here, we have exploited recently developed super-resolution fluorescence microscopy techniques that yield a near-molecular spatial resolution to analyze HIV-1 Gag and Env distribution patterns at the surface of virus producing cells. We observed recruitment of Env to the surroundings of Gag assembly sites, dependent on the presence of its cytoplasmic domain. A large proportion of Env was found in the vicinity of the Gag assembly sites rather than directly co-localizing with it. These results support an indirect mechanism of Env recruitment, presumably mediated through virus induced changes in the environment of the nascent Gag assembly. Furthermore, they suggest a role for the Env protein in HIV-1 transmission that goes beyond its well-characterized function as an entry protein on the viral surface.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Far-field optical nanoscopy.

          In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1.

            We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The HIV lipidome: a raft with an unusual composition.

              The lipids of enveloped viruses play critical roles in viral morphogenesis and infectivity. They are derived from the host membranes from which virus budding occurs, but the precise lipid composition has not been determined for any virus. Employing mass spectrometry, this study provides a quantitative analysis of the lipid constituents of HIV and a comprehensive comparison with its host membranes. Both a substantial enrichment of the unusual sphingolipid dihydrosphingomyelin and a loss of viral infectivity upon inhibition of sphingolipid biosynthesis in host cells are reported, establishing a critical role for this lipid class in the HIV replication cycle. Intriguingly, the overall lipid composition of native HIV membranes resembles detergent-resistant membrane microdomains and is strikingly different from that of host cell membranes. With this composition, the HIV lipidome provides strong evidence for the existence of lipid rafts in living cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2013
                February 2013
                28 February 2013
                : 9
                : 2
                : e1003198
                Affiliations
                [1 ]Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
                [2 ]Department of Biotechnology & Biophysics, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
                [3 ]Institute of Physical & Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
                [4 ]Bioquant, University of Heidelberg, Heidelberg, Germany
                University of Zurich, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HGK BM WM. Performed the experiments: WM MH. Analyzed the data: WM SM MH HGK. Contributed reagents/materials/analysis tools: WM SM BM MH HGK. Wrote the paper: WM BM MH HGK.

                Article
                PPATHOGENS-D-12-02004
                10.1371/journal.ppat.1003198
                3585150
                23468635
                1400f394-827c-43c2-91af-b13c1d3c8bcc
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 August 2012
                : 3 January 2013
                Page count
                Pages: 13
                Funding
                This work was supported by the Systems Biology Initiative (FORSYS) of the German Ministry of Research and Education (BMBF), project VIROQUANT and grant number 0315262. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article