20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A quantum random number generator on a nanosatellite in low Earth orbit

      , , , , ,
      Communications Physics
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum random number generators find applications in both quantum and classical communications schemes, particularly in security protocols where they can be used as a source of random seed or key material. In this work, we describe the implementation of a quantum random number generator on-board a nanosatellite deployed in low Earth orbit. Our generator samples shot noise from an entangled photon-pair source based on spontaneous parametric down-conversion, linking the entropy of the output to the quantization of the down-converted beam. We present analyzed data from the orbiting instrument alongside data taken from a ground-based engineering model where the statistical test suites indicate a good match to the output from a uniform distribution. Finally, we use the source to implement a prototype for an off-grid randomness beacon. This work paves the way to future low Earth orbit based public quantum randomness beacons.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Re-epithelialization and immune cell behaviour in an ex vivo human skin model

          A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Monte Carlo sampling methods using Markov chains and their applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantum cryptography based on Bell’s theorem

              Physical Review Letters, 67(6), 661-663
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Communications Physics
                Commun Phys
                Springer Science and Business Media LLC
                2399-3650
                December 2022
                December 03 2022
                : 5
                : 1
                Article
                10.1038/s42005-022-01096-7
                13b80c9a-e1fd-4efd-be57-aa48c74d520e
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article