30
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Analysis of Norovirus GII.4 Variant Strains Detected in Outbreaks of Gastroenteritis in Yokohama, Japan, from the 2006-2007 to the 2013-2014 Seasons

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Noroviruses (NoVs) are the leading cause of acute gastroenteritis, both in sporadic cases and outbreaks. Since the 1990s, the emergence of several GII.4 variants has been reported worldwide. To investigate the epidemic status of NoV, 6,724 stool samples collected from outbreaks in Yokohama, Japan, from the 2006–2007 to 2013–2014 seasons were assessed for NoVs. We genotyped one specimen from each GII outbreak and conducted a sequence analysis of the VP1 gene for several GII.4 strains. Of the 947 NoV outbreaks during our study, GII was detected in 835, and GII.4 was the predominant genotype of GII. Five different GII.4 variants, Yerseke 2006a, Den Haag 2006b (2006b), Apeldoorn 2007, New Orleans 2009, and Sydney 2012, were detected. During this study period, the most prevalent variant of GII.4 was 2006b, and in each individual season, either 2006b or Sydney 2012 was the predominant variant. Out of the 16 detected 2006b strains, 12 had some amino acid substitutions in their blockade epitope, and these substitutions were concentrated in three residues. Two of the 2006b strains detected in the 2012–2013 season had a S368E substitution, which is consistent with the amino acid residues at same site of NSW0514 (Sydney 2012 prototype). Among the 16 detected strains of Sydney 2012, a phylogenetic analysis showed that all five strains detected in Yokohama during the 2011–2012 season clustered away from the other Sydney 2012 strains that were detected in the 2012–2013 and 2013–2014 seasons. These five strains and other Sydney 2012 strains in Yokohama had a few amino acid differences in the blockade epitopes compared with NSW0514. The amino acid substitutions observed in this study provide informative data about the evolution of a novel GII.4 variant.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Norovirus gastroenteritis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001-2007.

            Noroviruses (NoVs) are the most common cause of viral gastroenteritis. Their high incidence and importance in health care facilities result in a great impact on public health. Studies from around the world describing increasing prevalence have been difficult to compare because of differing nomenclatures for variants of the dominant genotype, GII.4. We studied the global patterns of GII.4 epidemiology in relation to its genetic diversity. Data from NoV outbreaks with dates of onset from January 2001 through March 2007 were collected from 15 institutions on 5 continents. Partial genome sequences (n=775) were collected, allowing phylogenetic comparison of data from different countries. The 15 institutions reported 3098 GII.4 outbreaks, 62% of all reported NoV outbreaks. Eight GII.4 variants were identified. Four had a global distribution--the 1996, 2002, 2004, and 2006b variants. The 2003Asia and 2006a variants caused epidemics, but they were geographically limited. Finally, the 2001 Japan and 2001 Henry variants were found across the world but at low frequencies. NoV epidemics resulted from the global spread of GII.4 strains that evolved under the influence of population immunity. Lineages show notable (and currently unexplained) differences in geographic prevalence. Establishing a global NoV network by which data on strains with the potential to cause pandemics can be rapidly exchanged may lead to improved prevention and intervention strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013.

              Noroviruses are the leading cause of epidemic acute gastroenteritis in the United States. From September 2009 through August 2013, 3,960 norovirus outbreaks were reported to CaliciNet. Of the 2,895 outbreaks with a known transmission route, person-to-person and food-borne transmissions were reported for 2,425 (83.7%) and 465 (16.1%) of the outbreaks, respectively. A total of 2,475 outbreaks (62.5%) occurred in long-term care facilities (LTCF), 389 (9.8%) in restaurants, and 227 (5.7%) in schools. A total of 435 outbreaks (11%) were typed as genogroup I (GI) and 3,525 (89%) as GII noroviruses. GII.4 viruses caused 2,853 (72%) of all outbreaks, of which 94% typed as either GII.4 New Orleans or GII.4 Sydney. In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people ≥65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 November 2015
                2015
                : 10
                : 11
                : e0142568
                Affiliations
                [001]Microbiological Testing and Research Division, Yokohama City Institute of Public Health, Kanagawa, Japan
                The University of Hong Kong, HONG KONG
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MK. Performed the experiments: MK. Analyzed the data: MK. Contributed reagents/materials/analysis tools: MK. Wrote the paper: MK SU.

                Article
                PONE-D-15-30016
                10.1371/journal.pone.0142568
                4636242
                26544040
                1389bb2b-63cb-4a0f-8d42-80a329b79cf9
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 July 2015
                : 24 October 2015
                Page count
                Figures: 2, Tables: 3, Pages: 12
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All our sequences data are available from the DDBJ/GenBank/EMBL databases (accession numbers LC005704–LC005735).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article