4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fibroblast MMP14-Dependent Collagen Processing Is Necessary for Melanoma Growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Matrix metalloproteinases (MMPs) were considered as targets for the treatment of various cancers. However, initial trials using broad inhibitors to MMPs have failed, partly attributed to the contrasting functions of these proteases acting as tumor promoters and suppressors, among other reasons. Our data now suggest that specific inhibition of MMP14 might represent a more specific approach, as loss of this protease in fibroblasts resulted in reduced growth of grafted melanomas. Here, we found that deletion of MMP14 in fibroblasts generates a matrix-rich environment that reduces tumor vascularization and melanoma cell proliferation. In in vitro and ex vivo assays, we showed that the latter is mediated by stiffening of the tissue due to collagen accumulation. Additionally, in vivo, we show that independently of MMP14 deletion, a collagen-rich stiff matrix inhibits the growth of melanomas.

          Abstract

          Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14 Sf−/−) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14 Sf−/− mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14 Sf−/− skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A framework for advancing our understanding of cancer-associated fibroblasts

          Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accessories to the crime: functions of cells recruited to the tumor microenvironment.

            Mutationally corrupted cancer (stem) cells are the driving force of tumor development and progression. Yet, these transformed cells cannot do it alone. Assemblages of ostensibly normal tissue and bone marrow-derived (stromal) cells are recruited to constitute tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types. Their contributory functions to hallmark capabilities are increasingly well understood, as are the reciprocal communications with neoplastic cancer cells that mediate their recruitment, activation, programming, and persistence. This enhanced understanding presents interesting new targets for anticancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of tumor microenvironment in tumorigenesis

              Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                20 April 2021
                April 2021
                : 13
                : 8
                : 1984
                Affiliations
                [1 ]Department of Dermatology and Venereology, Faculty of Medicine, University of Cologne, Hospital Cologne, 50937 Cologne, Germany; elke.pach@ 123456uk-koeln.de (E.P.); maike.kuemper@ 123456uk-koeln.de (M.K.); cornelia.mauch@ 123456uk-koeln.de (C.M.)
                [2 ]Department of Dermatology, Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; juergen.brinckmann@ 123456uni-luebeck.de
                [3 ]Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; ruebsam0@ 123456uni-koeln.de
                Author notes
                Author information
                https://orcid.org/0000-0001-6409-6134
                https://orcid.org/0000-0001-6573-4783
                https://orcid.org/0000-0002-7470-0064
                Article
                cancers-13-01984
                10.3390/cancers13081984
                8074311
                33924099
                134a2385-fe3b-4eca-a8ea-13398d07b6dd
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 February 2021
                : 16 April 2021
                Categories
                Article

                mmp14,proteases,melanoma,collagen
                mmp14, proteases, melanoma, collagen

                Comments

                Comment on this article