10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing—increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Approximate entropy as a measure of system complexity.

          Techniques to determine changing system complexity from data are evaluated. Convergence of a frequently used correlation dimension algorithm to a finite value does not necessarily imply an underlying deterministic model or chaos. Analysis of a recently developed family of formulas and statistics, approximate entropy (ApEn), suggests that ApEn can classify complex systems, given at least 1000 data values in diverse settings that include both deterministic chaotic and stochastic processes. The capability to discern changing complexity from such a relatively small amount of data holds promise for applications of ApEn in a variety of contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-world brain networks.

            Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI.

              Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k-space coverage in the phase-encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4-fold phase-encoding undersampling, resulting in 16-fold acceleration and up to 16-fold maximal aliasing, was investigated. Task/stimulus-induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single-band excitation and longer pulse repetition times. Robust, whole-brain functional mapping at 7 T, with 2 x 2 x 2mm(3) (pulse repetition time 1.25 sec) and 1 x 1 x 2mm(3) (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 x 256 x 176 mm(3) and 192 x 172 x 176 mm(3), respectively, was demonstrated with current gradient performance. (c) 2010 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                29 May 2018
                2018
                : 12
                : 352
                Affiliations
                [1] 1Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California , Los Angeles, CA, United States
                [2] 2Department of Psychology, Center for Cognition and Brain Disorders, Hangzhou Normal University , Hangzhou, China
                [3] 3Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health , Baltimore, MD, United States
                Author notes

                Edited by: Amir Shmuel, McGill University, Canada

                Reviewed by: Adeel Razi, Wellcome Trust Centre for Neuroimaging (WT), University College London, United Kingdom; Xin Di, New Jersey Institute of Technology, United States

                *Correspondence: Danny J. J. Wang jwang71@ 123456gmail.com

                This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00352
                5986880
                29896081
                13453206-6df5-44bd-8f67-e4350d72ef76
                Copyright © 2018 Wang, Jann, Fan, Qiao, Zang, Lu and Yang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2018
                : 07 May 2018
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 111, Pages: 14, Words: 10306
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: UH2NS100614
                Award ID: U54MH091657
                Categories
                Neuroscience
                Hypothesis and Theory

                Neurosciences
                multiscale entropy (mse),complexity,bold fmri,electrophysiology,functional connectivity (fc)

                Comments

                Comment on this article