8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neuronal factors determining high intelligence

      ,
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons.

          An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts. Copyright © 2010 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Brains, Innovations and Evolution in Birds and Primates

            Several comparative research programs have focused on the cognitive, life history and ecological traits that account for variation in brain size. We review one of these programs, a program that uses the reported frequency of behavioral innovation as an operational measure of cognition. In both birds and primates, innovation rate is positively correlated with the relative size of association areas in the brain, the hyperstriatum ventrale and neostriatum in birds and the isocortex and striatum in primates. Innovation rate is also positively correlated with the taxonomic distribution of tool use, as well as interspecific differences in learning. Some features of cognition have thus evolved in a remarkably similar way in primates and at least six phyletically-independent avian lineages. In birds, innovation rate is associated with the ability of species to deal with seasonal changes in the environment and to establish themselves in new regions, and it also appears to be related to the rate at which lineages diversify. Innovation rate provides a useful tool to quantify inter-taxon differences in cognition and to test classic hypotheses regarding the evolution of the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Capacity limits of information processing in the brain.

              Despite the impressive complexity and processing power of the human brain, it is severely capacity limited. Behavioral research has highlighted three major bottlenecks of information processing that can cripple our ability to consciously perceive, hold in mind, and act upon the visual world, illustrated by the attentional blink (AB), visual short-term memory (VSTM), and psychological refractory period (PRP) phenomena, respectively. A review of the neurobiological literature suggests that the capacity limit of VSTM storage is primarily localized to the posterior parietal and occipital cortex, whereas the AB and PRP are associated with partly overlapping fronto-parietal networks. The convergence of these two networks in the lateral frontal cortex points to this brain region as a putative neural locus of a common processing bottleneck for perception and action.
                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                January 05 2016
                January 05 2016
                January 05 2016
                January 05 2016
                : 371
                : 1685
                : 20150180
                Article
                10.1098/rstb.2015.0180
                4685590
                26598734
                133853ca-2277-4bff-8e23-e530db5fd45f
                © 2016
                History

                Comments

                Comment on this article