89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reactive oxygen species and sperm cells

      review-article
      1 , 1 ,
      Reproductive biology and endocrinology : RB&E
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate. Excessive reactive oxygen species (ROS) generation can overwhelm protective mechanism and initiate changes in lipid and/or protein layers of sperm plasma membranes. Additionally, changes in DNA can be induced. The essential steps of lipid peroxidation have been listed as well as antioxidant substances of semen. A variety of detection techniques of lipid peroxidation have been summarized together with the lipid components of sperm membranes that can be subjected to stress. It is unsolved, a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa.

            Intact human sperm incorporated radiolabelled fatty acids into membrane phospholipids when incubated in medium containing bovine serum albumin as a fatty acid carrier. The polyunsaturated fatty acids were preferentially incorporated into the plasmalogen fraction of phospholipid. Uptake was linear with time over 2 hr; at this time sufficient label was available to determine the loss of fatty acids under conditions of spontaneous lipid peroxidation. Loss of the various phospholipid types, the loss of the various fatty acids from these phospholipids, and the overall loss of fatty acids were all first order. The loss of saturated fatty acids was slow with first order rate constant k1 = 0.003 hr-1; for the polyunsaturated fatty acids, arachidonic and docosahexaenoic acids, k1 = 0.145 and 0.162 hr-1, respectively. The rate of loss of fatty acids from the various phospholipid types was dependent on the type, with loss from phosphatidylethanolamine being the most rapid. Among the phospholipid types, phosphatidylethanolamine was lost at the greatest rate. Analysis of fatty acid loss through oxidation products was determined for radiolabelled arachidonic acid. Under conditions of spontaneous lipid peroxidation at 37 degrees C under air in the absence of albumin, free arachidonic acid was found in the medium, along with minor amounts of hydroxylated derivative. All the hydroperoxy fatty acid remained in the cells. In the presence of albumin, all the hydroperoxy fatty acid was found in the supernatant bound to albumin; none could be detected in the cells. Albumin is known as a very potent inhibitor of lipid peroxidation in sperm; its action may be explained, based on these results, as binding the damaging hydroperoxy fatty acids. These results also indicate that a phospholipase A2 may act in peroxidative defense by excising a hydroperoxy acyl group from phospholipid and providing the hydroperoxy fatty acid product as substrate to glutathione peroxidase. This formulation targets hydroperoxy fatty acid as a key intermediate in peroxidative degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of oxygen free radicals in carcinogenesis and brain ischemia.

              Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive biology and endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                2004
                23 March 2004
                : 2
                : 12
                Affiliations
                [1 ]Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
                Article
                1477-7827-2-12
                10.1186/1477-7827-2-12
                400757
                15038829
                13187528-d442-4ef2-98af-9ba76ecdbfee
                Copyright © 2004 Sanocka and Kurpisz; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 16 October 2003
                : 23 March 2004
                Categories
                Review

                Human biology
                Human biology

                Comments

                Comment on this article