18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We applied precise  zygote-mediated genome editing to eliminate beta-lactoglobulin (BLG), a major allergen in cows’ milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the two male calves. The third calf, a healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (<17%) at the target site. While her milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine bp deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating precisely biallelically edited cattle by zygote-mediated editing for the safe production of hypoallergenic milk.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.

          The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knockout rats via embryo microinjection of zinc-finger nucleases.

            The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc Finger Nucleases

              We describe here the use of zinc finger nucleases (ZFNs) for somatic and germline disruption of genes in zebrafish (Danio rerio), where targeted mutagenesis was previously intractable. ZFNs induce a targeted double-strand break in the genome that is repaired to generate small insertions and deletions. We designed ZFNs targeting the zebrafish golden and no tail/Brachyury genes. In both cases, injection of ZFN-encoding mRNA into 1-cell embryos yielded a high percentage of animals carrying distinct mutations at the ZFN-specified position and exhibiting expected loss-of-function phenotypes. Disrupted ntl alleles were transmitted from ZFN mRNA-injected founder animals in over half the adults tested at frequencies averaging 20%. The frequency and precision of gene disruption events observed, in combination with the ability to design ZFNs against any locus, open fundamentally novel avenues of experimentation, and suggest that ZFN technology may be widely applied to many organisms that allow mRNA delivery into the fertilized egg.
                Bookmark

                Author and article information

                Contributors
                goetz.laible@agresearch.co.nz
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                16 May 2018
                16 May 2018
                2018
                : 8
                : 7661
                Affiliations
                [1 ]ISNI 0000 0001 2110 5328, GRID grid.417738.e, AgResearch, Ruakura Research Centre, ; Hamilton, 3240 New Zealand
                [2 ]Rowett Institute, Aberdeen, AB25 2ZD United Kingdom
                [3 ]ISNI 0000 0001 2110 5328, GRID grid.417738.e, MS3 Solutions Ltd., Ruakura Research Centre, ; Hamilton, 3240 New Zealand
                [4 ]GRID grid.427259.f, Recombinetics, ; St. Paul, MN United States
                Author information
                http://orcid.org/0000-0003-1048-2819
                Article
                25654
                10.1038/s41598-018-25654-8
                5955954
                29769555
                1313a4b3-a2ee-49a9-bde2-43677e9e0637
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 January 2018
                : 19 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article