130
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ARDB—Antibiotic Resistance Genes Database

          The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database—the Antibiotic Resistance Genes Database (ARDB)—unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13 293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Bacterial census of poultry intestinal microbiome.

            The objective of this study was to generate a phylogenetic diversity census of bacteria identified in the intestinal tract of chickens and turkeys using a naïve analysis of all the curated 16S rRNA gene sequences archived in public databases. High-quality sequences of chicken and turkey gastrointestinal origin (3,184 and 1,345, respectively) were collected from the GenBank, Ribosomal Database Project, and Silva comprehensive ribosomal RNA database. Through phylogenetic and statistical analysis, 915 and 464 species-equivalent operational taxonomic units (defined at 0.03 phylogenetic distance) were found in the chicken and the turkey sequence collections, respectively. Of the 13 bacterial phyla identified in both bird species, Firmicutes, Bacteroidetes, and Proteobacteria were the largest phyla, accounting for >90% of all the sequences. The chicken sequences represent 117 established bacterial genera, and the turkey sequences represent 69 genera. The most predominant genera found in both the chicken and the turkey sequence data sets were Clostridium, Ruminococcus, Lactobacillus, and Bacteroides, but with different distribution between the 2 bird species. The estimated coverage of bacterial diversity of chicken and turkey reached 89 and 68% at species-equivalent and 93 and 73% at genus-equivalent levels, respectively. Less than 7,000 bacterial sequences from each bird species from various locations would be needed to reach 99% coverage for either bird species. Based on annotation of the sequence records, cecum was the most sampled gut segment. Chickens and turkeys were shown to have distinct intestinal microbiomes, sharing only 16% similarity at the species-equivalent level. Besides identifying gaps in knowledge on bacterial diversity in poultry gastrointestinal tract, the bacterial census generated in this study may serve as a framework for future studies and development of analytic tools.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides.

              The discrete multicomponent, multienzyme cellulosome complex of anaerobic cellulolytic bacteria provides enhanced synergistic activity among the different resident enzymes to efficiently hydrolyze intractable cellulosic and hemicellulosic substrates of the plant cell wall. A pivotal noncatalytic subunit called scaffoldin secures the various enzymatic subunits into the complex via the cohesin-dockerin interaction. The specificity characteristics and tenacious binding between the scaffoldin-based cohesin modules and the enzyme-borne dockerin domains dictate the supramolecular architecture of the cellulosome. The diversity in cellulosome architecture among the known cellulosome-producing bacteria is manifest in the arrangement of their genes in either multiple-scaffoldin or enzyme-linked clusters on the genome. The recently described three-dimensional crystal structure of the cohesin-dockerin heterodimer sheds light on the critical amino acids that contribute to this high-affinity protein-protein interaction. In addition, new information regarding the regulation of cellulosome-related genes, budding genetic tools, and emerging genomics of cellulosome-producing bacteria promises new insight into the assembly and consequences of the multienzyme complex.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 March 2014
                : 9
                : 3
                : e91941
                Affiliations
                [1 ]Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
                [2 ]School of Clinical Veterinary Science, Bristol, United Kingdom
                [3 ]AB Vista Feed Ingredients, Marlborough, United Kingdom
                [4 ]Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
                Hospital for Sick Children, Canada
                Author notes

                Competing Interests: Mike Bedford is employed by AB Vista Feed Ingredients. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Conceived and designed the experiments: MJP CWP. Performed the experiments: MJS CC. Analyzed the data: MJS. Contributed reagents/materials/analysis tools: TAC. Wrote the paper: MJS CWP MRB MJP.

                Article
                PONE-D-13-42057
                10.1371/journal.pone.0091941
                3962364
                24657972
                12f37240-03e3-47a8-813a-2a4d9940015c
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 October 2013
                : 18 February 2014
                Page count
                Pages: 13
                Funding
                The work was funded by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Livestock
                Poultry
                Chickens
                Anatomy
                Digestive System
                Computational Biology
                Ecology
                Microbial Ecology
                Genetics
                Genomics
                Metagenomics
                Microbiology
                Veterinary Science
                Veterinary Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article