3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of a molasses-based liquid supplement on gastrointestinal tract barrier function, inflammation, and performance of newly received feedlot cattle before and after a transport stress

      , , , , ,
      Journal of Animal Science
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to determine the effect of a dry versus a molasses-based liquid supplement on ruminal butyrate concentration, gastrointestinal tract (GIT) barrier function, inflammatory status, and performance of newly received feedlot cattle. In experiment 1, 60 mixed breed steers (234 ± 2.1 kg) were weaned, held overnight at a sale barn, then transported 14 h to Purdue University. After arrival, steers were weighed, blocked by body weight, and allotted within block to treatments (six pens per treatment and five steers per pen). Diets consisted of 45% roughage and 55% concentrate (dry matter basis). Treatments differed in the supplement source as follows: DRY: 10% dry supplement or LIQUID: 10% liquid molasses-based supplement. Feed intake, average daily gain (ADG), and gain:feed were determined for the three 21-d periods and overall. In experiment 2, 16 crossbred heifers (246 ± 7.5 kg) were used (8 heifers per treatment). Diets were the same as in experiment 1 and were fed for 60 d. On d 56 ruminal fluid samples were collected at 0, 3, 6, and 9 h after feeding. To mimic a stress event, heifers were transported for 4 h on d 61, rested overnight, and transported 12 h on d 62. Blood was collected from heifers immediately prior to transport and immediately upon their return. Gut barrier function using a Cr-EDTA marker was determined after transportation. Data were analyzed using the GLIMMIX procedure of SAS. Steers fed the liquid supplement had greater (P ≤ 0.03) ADG through d 42 and overall compared to steers fed the dry supplement. Feed intake did not differ (P = 0.25) between treatments from d 0 to d 21. However, steers fed the liquid supplement showed greater (P < 0.001) dry matter intake after d 21 and overall compared to those fed the dry supplement. Steers fed the liquid supplement tended (P < 0.09) to have reduced serum haptoglobin and lipopolysaccharide-binding protein (LBP) compared to those fed the dry supplement. Heifers fed the liquid supplement had greater (P = 0.02) Cr in urine and tended (P = 0.07) to have lower serum LBP after transport compared to those fed the dry supplement. Heifers fed the liquid supplement had 72% lower serum haptoglobin before, but only a 19% lower serum haptoglobin after transport compared to animals fed the dry supplement (treatment × time; P = 0.07). Therefore, the liquid supplement altered GIT barrier function, and improved inflammatory status, resulting in increased growth of receiving cattle.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Energy contributions of volatile fatty acids from the gastrointestinal tract in various species.

          E BERGMAN (1990)
          The VFA, also known as short-chain fatty acids, are produced in the gastrointestinal tract by microbial fermentation of carbohydrates and endogenous substrates, such as mucus. This can be of great advantage to the animal, since no digestive enzymes exist for breaking down cellulose or other complex carbohydrates. The VFA are produced in the largest amounts in herbivorous animal species and especially in the forestomach of ruminants. The VFA, however, also are produced in the lower digestive tract of humans and all animal species, and intestinal fermentation resembles that occurring in the rumen. The principal VFA in either the rumen or large intestine are acetate, propionate, and butyrate and are produced in a ratio varying from approximately 75:15:10 to 40:40:20. Absorption of VFA at their site of production is rapid, and large quantities are metabolized by the ruminal or large intestinal epithelium before reaching the portal blood. Most of the butyrate is converted to ketone bodies or CO2 by the epithelial cells, and nearly all of the remainder is removed by the liver. Propionate is similarly removed by the liver but is largely converted to glucose. Although species differences exist, acetate is used principally by peripheral tissues, especially fat and muscle. Considerable energy is obtained from VFA in herbivorous species, and far more research has been conducted on ruminants than on other species. Significant VFA, however, are now known to be produced in omnivorous species, such as pigs and humans. Current estimates are that VFA contribute approximately 70% to the caloric requirements of ruminants, such as sheep and cattle, approximately 10% for humans, and approximately 20-30% for several other omnivorous or herbivorous animals. The amount of fiber in the diet undoubtedly affects the amount of VFA produced, and thus the contribution of VFA to the energy needs of the body could become considerably greater as the dietary fiber increases. Pigs and some species of monkey most closely resemble humans, and current research should be directed toward examining the fermentation processes and VFA metabolism in those species. In addition to the energetic or nutritional contributions of VFA to the body, the VFA may indirectly influence cholesterol synthesis and even help regulate insulin or glucagon secretion. In addition, VFA production and absorption have a very significant effect on epithelial cell growth, blood flow, and the normal secretory and absorptive functions of the large intestine, cecum, and rumen. The absorption of VFA and sodium, for example, seem to be interdependent, and release of bicarbonate usually occurs during VFA absorption.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway

            Microbial metabolites such as short chain fatty acids (SCFAs) are highly produced in the intestine and potentially regulate the immune system. We studied the function of SCFAs in regulation of T cell differentiation into effector and regulatory T cells. We report that SCFAs can directly promote T cell differentiation into T cells producing IL-17, IFN-γ, and/or IL-10 depending on cytokine milieu. This effect of SCFAs on T cells is independent of GPR41- or GPR43 but dependent on direct histone deacetylase (HDAC) inhibitor activity. Inhibition of HDACs in T cells by SCFAs increased the acetylation of p70 S6 kinase and phosphorylation rS6, regulating the mTOR pathway required for generation of Th17, Th1, and IL-10+ T cells. Acetate (C2) administration enhanced the induction of Th1 and Th17 cells during C. rodentium infection but decreased anti-CD3-induced inflammation in an IL-10-dependent manner. Our results indicate that SCFAs promote T cell differentiation into both effector and regulatory T cells to promote either immunity or immune tolerance depending on immunological milieu.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From the gut to the peripheral tissues: the multiple effects of butyrate.

              Butyrate is a natural substance present in biological liquids and tissues. The present paper aims to give an update on the biological role of butyrate in mammals, when it is naturally produced by the gastrointestinal microbiota or orally ingested as a feed additive. Recent data concerning butyrate production delivery as well as absorption by the colonocytes are reported. Butyrate cannot be detected in the peripheral blood, which indicates fast metabolism in the gut wall and/or in the liver. In physiological conditions, the increase in performance in animals could be explained by the increased nutrient digestibility, the stimulation of the digestive enzyme secretions, a modification of intestinal luminal microbiota and an improvement of the epithelial integrity and defence systems. In the digestive tract, butyrate can act directly (upper gastrointestinal tract or hindgut) or indirectly (small intestine) on tissue development and repair. Direct trophic effects have been demonstrated mainly by cell proliferation studies, indicating a faster renewal of necrotic areas. Indirect actions of butyrate are believed to involve the hormono-neuro-immuno system. Butyrate has also been implicated in down-regulation of bacteria virulence, both by direct effects on virulence gene expression and by acting on cell proliferation of the host cells. In animal production, butyrate is a helpful feed additive, especially when ingested soon after birth, as it enhances performance and controls gut health disorders caused by bacterial pathogens. Such effects could be considered for new applications in human nutrition.
                Bookmark

                Author and article information

                Journal
                Journal of Animal Science
                Oxford University Press (OUP)
                0021-8812
                1525-3163
                January 01 2023
                January 03 2023
                January 03 2023
                January 01 2023
                January 03 2023
                January 03 2023
                : 101
                Article
                10.1093/jas/skac295
                36592757
                12eceea6-9e76-4fbf-8788-62bd02ac24f1
                © 2023

                https://academic.oup.com/pages/standard-publication-reuse-rights

                History

                Comments

                Comment on this article