0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Phase-Separation-Protein-Related Function Based on Gene Ontology by Using Machine Learning Methods

      , , , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phase-separation proteins (PSPs) are a class of proteins that play a role in the process of liquid–liquid phase separation, which is a mechanism that mediates the formation of membranelle compartments in cells. Identifying phase separation proteins and their associated function could provide insights into cellular biology and the development of diseases, such as neurodegenerative diseases and cancer. Here, PSPs and non-PSPs that have been experimentally validated in earlier studies were gathered as positive and negative samples. Each protein’s corresponding Gene Ontology (GO) terms were extracted and used to create a 24,907-dimensional binary vector. The purpose was to extract essential GO terms that can describe essential functions of PSPs and build efficient classifiers to identify PSPs with these GO terms at the same time. To this end, the incremental feature selection computational framework and an integrated feature analysis scheme, containing categorical boosting, least absolute shrinkage and selection operator, light gradient-boosting machine, extreme gradient boosting, and permutation feature importance, were used to build efficient classifiers and identify GO terms with classification-related importance. A set of random forest (RF) classifiers with F1 scores over 0.960 were established to distinguish PSPs from non-PSPs. A number of GO terms that are crucial for distinguishing between PSPs and non-PSPs were found, including GO:0003723, which is related to a biological process involving RNA binding; GO:0016020, which is related to membrane formation; and GO:0045202, which is related to the function of synapses. This study offered recommendations for future research aimed at determining the functional roles of PSPs in cellular processes by developing efficient RF classifiers and identifying the representative GO terms related to PSPs.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMOTE: Synthetic Minority Over-sampling Technique

            An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              XGBoost

                Bookmark

                Author and article information

                Contributors
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                June 2023
                May 31 2023
                : 13
                : 6
                : 1306
                Article
                10.3390/life13061306
                12eb5c21-be3e-4908-b805-048ed8cbed7f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article