10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of Jumonji Histone Demethylases Selectively Suppresses HER2 + Breast Leptomeningeal Carcinomatosis Growth via Inhibition of GMCSF Expression

      , , ,
      Cancer Research
      American Association for Cancer Research (AACR)
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d2811973e101">HER2+ breast leptomeningeal carcinomatosis (HER2+ LC) occurs when tumor cells spread to cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord, a complication with a dire prognosis. HER2+ LC remains incurable, with few treatment options. Currently, much effort is devoted toward development of therapies that target mutations. However, targeting epigenetic or transcriptional states of HER2+ LC tumors might efficiently target HER2+ LC growth via inhibition of oncogenic signaling; this approach remains promising but is less explored. To test this possibility, we established primary HER2+ LC (Lepto) cell lines from nodular HER2+ LC tissues. These lines are phenotypically CD326+CD49f-, confirming that they are derived from HER2+ LC tumors, and express surface CD44+CD24-, a cancer stem cell (CSC) phenotype. Like CSCs, Lepto lines showed greater drug resistance and more aggressive behavior compared with other HER2+ breast cancer lines in vitro and in vivo. Interestingly, the three Lepto lines overexpressed Jumonji domain-containing histone lysine demethylases KDM4A/4C. Treatment with JIB04, a selective inhibitor of Jumonji demethylases, or genetic loss of function of KDM4A/4C induced apoptosis and cell-cycle arrest and reduced Lepto cell viability, tumorsphere formation, regrowth, and invasion in vitro. JIB04 treatment of patient-derived xenograft mouse models in vivo reduced HER2+ LC tumor growth and prolonged animal survival. Mechanistically, KDM4A/4C inhibition downregulated GMCSF expression and prevented GMCSF-dependent Lepto cell proliferation. Collectively, these results establish KDM4A/4C as a viable therapeutic target in HER2+ LC and spotlight the benefits of targeting the tumorigenic transcriptional network. SIGNIFICANCE: HER2+ LC tumors overexpress KDM4A/4C and are sensitive to the Jumonji demethylase inhibitor JIB04, which reduces the viability of primary HER2+ LC cells and increases survival in mouse models. </p>

          Related collections

          Author and article information

          Journal
          Cancer Research
          Cancer Res
          American Association for Cancer Research (AACR)
          0008-5472
          1538-7445
          June 15 2021
          June 15 2021
          June 15 2021
          May 03 2021
          : 81
          : 12
          : 3200-3214
          Article
          10.1158/0008-5472.CAN-20-3317
          9126130
          33941612
          12e5e063-7a4a-4c2c-b4c2-e90e45e2d333
          © 2021
          History

          Comments

          Comment on this article