24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multistep phosphorylation systems: tunable components of biological signaling circuits

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase–dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.

          To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs.

            Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisiae. By correlating these motifs with kinase primary sequence, we uncovered previously unappreciated rules for determining specificity within the kinase family, including a residue determining P-3 arginine specificity among members of the CMGC [CDK (cyclin-dependent kinase), MAPK (mitogen-activated protein kinase), GSK (glycogen synthase kinase), and CDK-like] group of kinases. Furthermore, computational scanning of the yeast proteome enabled the prediction of thousands of new kinase-substrate relationships. We experimentally verified several candidate substrates of the Prk1 family of kinases in vitro and in vivo and identified a protein substrate of the kinase Vhs1. Together, these results elucidate how kinase catalytic domains recognize their phosphorylation targets and suggest general avenues for the identification of previously unknown kinase substrates across eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs.

              Recent experimental work has shown that the mitogen-activated protein (MAP) kinase cascade can convert graded inputs into switch-like outputs. The cascade could therefore filter out noise (signals of insufficient magnitude or duration) and still respond decisively to supra-threshold stimuli. Here, we explore the biochemical mechanisms likely to be at the root of this behavior.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Role: Guest Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                05 November 2014
                : 25
                : 22 , Special Issue on Quantitative Biology
                : 3456-3460
                Affiliations
                Institute of Technology, University of Tartu, 50411 Tartu, Estonia
                University of California, Santa Cruz
                Author notes
                1Address correspondence to: Mart Loog ( mart.loog@ 123456ut.ee ).
                Article
                E14-02-0774
                10.1091/mbc.E14-02-0774
                4230602
                25368420
                129f124f-cd21-4f4f-829e-1b91910bbc9e
                © 2014 Valk et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 18 August 2014
                : 26 August 2014
                : 27 August 2014
                Categories
                Perspectives

                Molecular biology
                Molecular biology

                Comments

                Comment on this article