19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PUF family of RNA-binding proteins regulate gene expression post-transcriptionally. Saccharomyces cerevisiae Puf3p is characterised as binding nuclear-encoded mRNAs specifying mitochondrial proteins. Extensive studies of its regulation of COX17 demonstrate its role in mRNA decay. Using integrated genome-wide approaches we define an expanded set of Puf3p target mRNAs and quantitatively assessed the global impact of loss of PUF3 on gene expression using mRNA and polysome profiling and quantitative proteomics. In agreement with prior studies, our sequencing of affinity-purified Puf3-TAP associated mRNAs (RIP-seq) identified mRNAs encoding mitochondrially-targeted proteins. Additionally, we also found 720  new mRNA targets that predominantly encode proteins that enter the nucleus. Comparing transcript levels in wild-type and puf3∆ cells revealed that only a small fraction of mRNA levels alter, suggesting Puf3p determines mRNA stability for only a limited subset of its target mRNAs. Finally, proteomic and translatomic studies suggest that loss of Puf3p has widespread, but modest, impact on mRNA translation. Taken together our integrated multi-omics data point to multiple classes of Puf3p targets, which display coherent post-transcriptional regulatory properties and suggest Puf3p plays a broad, but nuanced, role in the fine-tuning of gene expression.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Poly(A)-tail profiling reveals an embryonic switch in translational control

          Poly(A) tails enhance the stability and translation of most eukaryotic mRNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded greater understanding of poly(A)-tail function. Here, we describe poly(A)-tail length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of millions of individual RNAs isolated from yeasts, cell lines, Arabidopsis leaves, mouse liver, and zebrafish and frog embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with mRNAs encoding ribosomal proteins and other “housekeeping” proteins tending to have shorter tails. As expected, tail lengths were coupled to translational efficiency in early zebrafish and frog embryos. However, this strong coupling diminished at gastrulation and was absent in non-embryonic samples, indicating a rapid developmental switch in the nature of translational control. This switch complements an earlier switch to zygotic transcriptional control and explains why the predominant effect of microRNA-mediated deadenylation concurrently shifts from translational repression to mRNA destabilization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global translational responses to oxidative stress impact upon multiple levels of protein synthesis.

            Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H(2)O(2) in the yeast Saccharomyces cerevisiae. Our data show that H(2)O(2) causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the alpha-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H(2)O(2) in a gcn2 mutant. Polysome analysis indicated that H(2)O(2) causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H(2)O(2) stress. For some candidate mRNAs, we show that a low concentration of H(2)O(2) results in increased protein production. In contrast, a high concentration of H(2)O(2) promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modular recognition of RNA by a human pumilio-homology domain.

              Puf proteins are developmental regulators that control mRNA stability and translation by binding sequences in the 3' untranslated regions of their target mRNAs. We have determined the structure of the RNA binding domain of the human Puf protein, Pumilio1, bound to a high-affinity RNA ligand. The RNA binds the concave surface of the molecule, where each of the protein's eight repeats makes contacts with a different RNA base via three amino acid side chains at conserved positions. We have mutated these three side chains in one repeat, thereby altering the sequence specificity of Pumilio1. Thus, the high affinity and specificity of the PUM-HD for RNA is achieved using multiple copies of a simple repeated motif.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 October 2015
                2015
                : 5
                : 15518
                Affiliations
                [1 ]Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road , Manchester, M13 9PT, United Kingdom
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                Present address: Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.

                [‡]

                Present address: Sheffield Institute for Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, United Kingdom.

                Article
                srep15518
                10.1038/srep15518
                4616039
                26493364
                127a2ef5-d85c-4e47-9e51-757581e6b645
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 June 2015
                : 29 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article