3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetics and metabolism of icaritin in rats by UPLC‐MS/MS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Icaritin (ICT) has distinct bioactivities, especially known for its beneficial effects on bone‐related degenerative disorders; however, its pharmacokinetic properties remain unknown. A novel developed UPLC‐MS/MS method for the determination of ICT and its main metabolite glucuronidated icaritin (GICT) was firstly applied to pharmacokinetic and metabolism studies of ICT in female rats, which were intraperitoneally given 40 mg/kg ICT. Following the protein precipitation of plasma samples with acetonitrile, ICT and GICT were separated on a C18 column using gradient elution mode and quantified in the multiple reaction monitoring mode. The linearities were acceptable for ICT ( r = 0.9960) and GICT ( r = 0.9968), and the lower limit of quantification values was 0.5 and 5 ng/ml, respectively. The accuracy fell in the range of 92.0%–103.1% and precisions were within 9.5%. Good linearity, accuracy, precision, and recovery were achieved for the UPLC‐MS/MS method. ICT was predominantly and rapidly biotransformed to GICT which was slowly eliminated in vivo with a terminal half‐life value of 4.51 hr. Pharmacokinetics of pure ICT eliminated biotransformation interference of Epimedium extract and disclosed genuine pharmacokinetic manner of ICT, as well as firstly elucidated low concentration and bioavailability of ICT in rat plasma.

          Abstract

          A major metabolite of the intraperitoneally administered icaritin in rat by intraperitoneal was firstly identified and quantified UPLC‐MS/MS for assay of icaritin, and its metabolite in plasma was established first paper reporting pharmacokinetics of icaritin and its metabolite

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Icaritin Causes Sustained ERK1/2 Activation and Induces Apoptosis in Human Endometrial Cancer Cells

          Icaritin, a compound from Epimedium Genus, has selective estrogen receptor (ER) modulating activities, and posses anti-tumor activity. Here, we examined icaritin effect on cell growth of human endometrial cancer Hec1A cells and found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin-inhibited cell growth was associated with increased levels of p21 and p27 expression and reduced cyclinD1 and cdk 4 expression. Icaritin also induced cell apoptosis accompanied by activation of caspases as evidenced by the cleavage of endogenous substrate Poly (ADP-ribose) polymerase (PARP) and cytochrome c release, which was abrogated by pretreatment with the pan-caspase inhibitor z-VAD-fmk. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression. Furthermore, icaritin induced sustained phosphorylation of extracellular signal-regulated kinase1/2 (the MAPK/ ERK1/2) in Hec1A cells and U0126, a specific MAP kinase kinase (MEK1/2) inhibitor, blocked the ERK1/2 activation by icaritin and abolished the icaritin-induced growth inhibition and apoptosis. Our results demonstrated that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rational for preclinical and clinical evaluation of icaritin for endometrial cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro.

            Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Icaritin Inhibits JAK/STAT3 Signaling and Growth of Renal Cell Carcinoma

              Signal transducer and activator of transcription-3 (STAT3) is critical for cancer progression by regulating tumor cell survival, proliferation, and angiogenesis. Herein, we investigated the regulation of STAT3 activation and the therapeutic effects of Icaritin, a prenyl flavonoid derivative from Epimedium Genus, in renal cell carcinoma (RCC). Icaritin showed significant anti-tumor activity in the human and mouse RCC cell lines, 786-O and Renca, respectively. Icaritin inhibited both constitutive and IL-6-induced phospho-STAT3 (STAT3Y705) and reduced the level of STAT3-regulated proteins Bcl-xL, Mcl-1, Survivin, and CyclinD1 in a dose-dependent manner. Icaritin also inhibited activation of Janus-activated kinase-2 (JAK2), while it showed minimal effects on the activation of other key signaling pathways, including AKT and MAPK. Expression of the constitutively active form of STAT3 blocked Icaritin-induced apoptosis, while siRNA directed against STAT3 potentiated apoptosis. Finally, Icaritin significantly blunted RCC tumor growth in vivo, reduced STAT3 activation, and inhibited Bcl-xL and Cyclin E, as well as VEGF expression in tumors, which was associated with reduced tumor angiogenesis. Overall, these results suggest that Icaritin strongly inhibits STAT3 activation and is a potentially effective therapeutic option for the treatment of renal cell carcinoma.
                Bookmark

                Author and article information

                Contributors
                zhangshq@hotmail.com
                Journal
                Food Sci Nutr
                Food Sci Nutr
                10.1002/(ISSN)2048-7177
                FSN3
                Food Science & Nutrition
                John Wiley and Sons Inc. (Hoboken )
                2048-7177
                12 November 2019
                December 2019
                : 7
                : 12 ( doiID: 10.1002/fsn3.v7.12 )
                : 4001-4006
                Affiliations
                [ 1 ] National Institute for Nutrition and Health Chinese Center for Disease Control and Prevention Beijing China
                [ 2 ] Woods Worth College University of Toronto Toronto ON Canada
                Author notes
                [*] [* ] Correspondence

                Shuang‐Qing Zhang, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.

                Email: zhangshq@ 123456hotmail.com

                Author information
                https://orcid.org/0000-0002-6997-2612
                Article
                FSN31263
                10.1002/fsn3.1263
                6924312
                31890179
                12431e7a-dc49-4527-9955-345221602b20
                © 2019 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2019
                : 07 October 2019
                : 09 October 2019
                Page count
                Figures: 3, Tables: 3, Pages: 6, Words: 3803
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                December 2019
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.3 mode:remove_FC converted:20.12.2019

                glucuronidated icaritin,icaritin,metabolism,pharmacokinetics,uplc‐ms/ms

                Comments

                Comment on this article