31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Formation of tumour cell aggregation/emboli prolongs the survival of circulating tumour cells in the circulation, enhances their physical trapping in the micro-vasculature and thus increases metastatic spread of the cancer cells to remote sites.

          Results

          It shows here that the presence of the galactoside-binding galectin-3, whose concentration is markedly increased in the blood circulation of cancer patients, increases cancer cell homotypic aggregation under anchorage-independent conditions by interaction with the oncofetal Thomsen-Friedenreich carbohydrate (Galβ1,3GalNAcα-, TF) antigen on the cancer-associated transmembrane mucin protein MUC1. The galectin-3-MUC1 interaction induces MUC1 cell surface polarization and exposure of the cell surface adhesion molecules including E-cadherin. The enhanced cancer cell homotypic aggregation by galectin-MUC1 interaction increases the survival of the tumour cells under anchorage-independent conditions by allowing them to avoid initiation of anoikis (suspension-induced apoptosis).

          Conclusion

          These results suggest that the interaction between free circulating galectin-3 and cancer-associated MUC1 promotes embolus formation and survival of disseminating tumour cells in the circulation. This provides new information into our understanding of the molecular mechanisms of cancer cell haematogenous dissemination and suggests that targeting the interaction of circulating galectin-3 with MUC1 in the circulation may represent an effective therapeutic approach for preventing metastasis.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Galectins as modulators of tumour progression.

          Galectins are a family of animal lectins with diverse biological activities. They function both extracellularly, by interacting with cell-surface and extracellular matrix glycoproteins and glycolipids, and intracellularly, by interacting with cytoplasmic and nuclear proteins to modulate signalling pathways. Current research indicates that galectins have important roles in cancer; they contribute to neoplastic transformation, tumour cell survival, angiogenesis and tumour metastasis. They can modulate the immune and inflammatory responses and might have a key role helping tumours to escape immune surveillance. How do the different members of the Galectin family contribute to these diverse aspects of tumour biology?
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of galectin-3 modulates T-cell growth and apoptosis.

              Galectin-3 is a member (if a large family of beta-galactoside-binding animal lectins. It has been shown that the expression of galectin-3 is upregulated in proliferating cells, suggesting a possible role for this lectin in regulation of cell growth. Previously, we have shown that T cells infected with human T-cell leukemia virus type I express high levels of galectin-3, in contrast to uninfected cells, which do not express detectable amounts of this protein. In this study, we examined growth properties of human leukemia T cells transfected with galectin-3 cDNA, and thus constitutively overexpressing this lectin. Transfectants expressing galectin-3 displayed higher growth rates than control transfectants, which do not express this lectin. Furthermore, galectin-3 expression in these cells confers resistance to apoptosis induced by anti-Fas antibody and staurosporine. Galectin-3 was found to have significant sequence similarity with Bcl-2, a well-characterized suppressor of apoptosis. In particular, the lectin contains the NWGR motif that is highly conserved among members of the Bcl-2 family and shown to be critical for the apoptosis-suppressing activity. We further demonstrated that galectin-3 interacts with Bc1-2 in a lactose-inhibitable manner. We conclude that galectin-3 is a regulator of cell growth and apoptosis and it may function through a cell death inhibition pathway that involves Bcl-2.
                Bookmark

                Author and article information

                Journal
                Mol Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2010
                18 June 2010
                : 9
                : 154
                Affiliations
                [1 ]Gastroenterology Research Unit, School of Clinical Sciences, Centre for Glycobiology, University of Liverpool, Liverpool L69 3GE, UK
                [2 ]Division of Molecular Genetics, the Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
                Article
                1476-4598-9-154
                10.1186/1476-4598-9-154
                2911446
                20565834
                121dbb96-e85b-4b44-8c72-152c5fbc5269
                Copyright ©2010 Zhao et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 February 2010
                : 18 June 2010
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article