11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bystander Selection for Antimicrobial Resistance: Implications for Patient Health

      research-article
      1 , * , 2 , 1 , 3
      Trends in microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial therapy promotes resistance emergence in target infections and in off-target microbiota. Off-target resistance emergence threatens patient health when off-target populations are a source of future infections, as they are for many important drug-resistant pathogens. However, the health risks of antimicrobial exposure in off-target populations remain largely unquantified, making rational antibiotic stewardship challenging. Here, we discuss the contribution of bystander antimicrobial exposure to the resistance crisis, the implications for antimicrobial stewardship, and some novel opportunities to limit resistance evolution while treating target pathogens.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Mobile Genetic Elements Associated with Antimicrobial Resistance

          SUMMARY Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , Enterobacter spp., and Escherichia coli ), which have become the most problematic hospital pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiota-mediated colonization resistance against intestinal pathogens.

            Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coagulase-negative staphylococci.

              The definition of the heterogeneous group of coagulase-negative staphylococci (CoNS) is still based on diagnostic procedures that fulfill the clinical need to differentiate between Staphylococcus aureus and those staphylococci classified historically as being less or nonpathogenic. Due to patient- and procedure-related changes, CoNS now represent one of the major nosocomial pathogens, with S. epidermidis and S. haemolyticus being the most significant species. They account substantially for foreign body-related infections and infections in preterm newborns. While S. saprophyticus has been associated with acute urethritis, S. lugdunensis has a unique status, in some aspects resembling S. aureus in causing infectious endocarditis. In addition to CoNS found as food-associated saprophytes, many other CoNS species colonize the skin and mucous membranes of humans and animals and are less frequently involved in clinically manifested infections. This blurred gradation in terms of pathogenicity is reflected by species- and strain-specific virulence factors and the development of different host-defending strategies. Clearly, CoNS possess fewer virulence properties than S. aureus, with a respectively different disease spectrum. In this regard, host susceptibility is much more important. Therapeutically, CoNS are challenging due to the large proportion of methicillin-resistant strains and increasing numbers of isolates with less susceptibility to glycopeptides.
                Bookmark

                Author and article information

                Journal
                9310916
                8474
                Trends Microbiol
                Trends Microbiol.
                Trends in microbiology
                0966-842X
                1878-4380
                18 February 2020
                06 July 2019
                October 2019
                01 October 2020
                : 27
                : 10
                : 864-877
                Affiliations
                [1 ]Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA
                [2 ]Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
                [3 ]Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
                Author notes
                [* ]Correspondence: vum84@ 123456psu.edu (V.J. Morley).
                Author information
                http://orcid.org/0000-0001-7604-7903
                Article
                NIHMS1562028
                10.1016/j.tim.2019.06.004
                7079199
                31288975
                1219f930-88b5-4627-a40e-8e83db2cf959

                This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/)

                History
                Categories
                Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article