1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-155 Regulates the Proliferation of Glioma Cells Through PI3K/AKT Signaling

      research-article
      , *
      Frontiers in Neurology
      Frontiers Media S.A.
      miR-155, glioma, PI3K/AKT signal pathway, proliferation, migration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Micro-RNA plays a critical role in the pathological process of gliomas. Previous research showed that the level of miR-155 was significantly increased in many cancers, including gliomas. However, the mechanism of glioma is still unknown.

          Method: To investigate the regulatory function of miR-155 on glioma U87-MG cells and its effects on related signaling pathways. After transfection of miR-155 mimic and inhibitor, the level of miR-155 were applied to detect cell proliferation, apoptosis, senescence index, invasive ability and cell migration at different time points (0, 24, 24 h, respectively) by CCK8 assay, flow cytometry, β-galactosidase (β-gal) staining, transwell and scratch test, respectively. The effect of miR-155 on PI3K/AKT signal pathway was observed at meantime.

          Results: Compared with the control group, after miR-155 mimic transfection, U87-MG cell viability, cell migration rate and invasiveness were increased, while apoptosis and senescence were significantly decreased, which was the opposite on miR-155 inhibitor transfection. The phosphorylation levels of miR-155, PI3K, AKT, PI3K, and AKT in U87-MG cells intervened with miR-155 mimic also increased significantly, while the levels of PTEN, Caspase-3, Caspase-9 mRNA, and protein declined significantly, with statistically significant difference. Meanwhile, compared with the control group, miR-155 inhibitor group were on the contrary.

          Conclusion: The study indicated that miR-155 take charge a key function in regulating the proliferation, migration, and invasion of glioma U87-MG cells through PI3K/AKT signaling pathway, and has anti-glioma effects by inhibition of miR-155, which provided ideas for further clinical treatment of glioma patients.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of gliomas.

          Gliomas are the most common type of primary intracranial tumors. Some glioma subtypes cause significant mortality and morbidity that are disproportionate to their relatively rare incidence. A very small proportion of glioma cases can be attributed to inherited genetic disorders. Many potential risk factors for glioma have been studied to date, but few provide explanation for the number of brain tumors identified. The most significant of these factors includes increased risk due to exposure to ionizing radiation, and decreased risk with history of allergy or atopic disease. The potential effect of exposure to cellular phones has been studied extensively, but the results remain inconclusive. Recent genomic analyses, using the genome-wide association study (GWAS) design, have identified several inherited risk variants that are associated with increased glioma risk. The following chapter provides an overview of the current state of research in the epidemiology of intracranial glioma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hepatocellular Carcinoma Cell-Secreted Exosomal MicroRNA-210 Promotes Angiogenesis In Vitro and In Vivo

            We previously found that 19 microRNAs (miRNAs) significantly increased in the sera of hepatocellular carcinoma (HCC) patients. Here, we evaluated whether these miRNAs were secreted by HCC cells and contributed to tumor angiogenesis. High level of miR-210-3p (miR-210) was detected in the exosomes isolated from the sera of HCC patients and the conditioned media of hepatoma cells. Higher miR-210 level in serum was correlated with higher microvessel density in HCC tissues. Moreover, the HCC cell-secreted exosomes promoted in vitro tubulogenesis of endothelial cells, which was strengthened by overexpressing miR-210 in HCC cells but was attenuated by repressing miR-210 or DROSHA in HCC cells. This pro-tubulogenesis effect by HCC exosomes was also abrogated by antagonizing miR-210 in endothelial cells. Subsequent in vivo studies revealed that Matrigel plug and subcutaneous tumor xenografts treated with HCC cell-derived exosomal miR-210 displayed much more vessels. Furthermore, exosomal miR-210 could be delivered into endothelial cells and directly inhibited the expression of SMAD4 and STAT6, resulting in enhanced angiogenesis. Collectively, HCC cell-secreted exosomal miR-210 may be transferred into endothelial cells and thereby promotes tumor angiogenesis by targeting SMAD4 and STAT6. Our findings identify a novel mechanism of HCC angiogenesis and highlight the biological importance of exosomal miR-210.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway

              Sorafenib resistance remains a major obstacle for the effective treatments of hepatocellular carcinoma (HCC). Recent studies indicate that activated Akt contributes to the acquired resistance to sorafenib, and miR-21 dysregulates phosphatase and tensin homolog (PTEN), which inhibits Akt activation. Sorafenib-resistant HCC cells were shown to be refractory to sorafenib-induced growth inhibition and apoptosis. Akt and its downstream factors were highly activated and/or upregulated in sorafenib-resistant cells. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to sorafenib, while its induction had the opposite effect. Differential screening of miRNAs showed higher levels of miR-21 in sorafenib-resistant HCC cells. Exposure of HCC cells to sorafenib led to an increase in miR-21 expression, a decrease in PTEN expression and sequential Akt activation. Transfection of miR-21 mimics in HCC cells restored sorafenib resistance by inhibiting autophagy. Anti-miR-21 oligonucleotides re-sensitized sorafenib-resistant cells by promoting autophagy. Inhibition of miR-21 enhances the efficacy of sorafenib in treating sorafenib-resistant HCC tumors in vivo. We conclude that miR-21 participates in the acquired resistance of sorafenib by suppresing autophagy through the Akt/PTEN pathway. MiR-21 could serve as a therapeutic target for overcoming sorafenib resistance in the treatment of HCC.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                28 April 2020
                2020
                : 11
                : 297
                Affiliations
                Department of Neurosurgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University , Jinan, China
                Author notes

                Edited by: Massimo Nabissi, University of Camerino, Italy

                Reviewed by: Juan Manuel Sepulveda Sanchez, University Hospital October 12, Spain; Maya Srikanth Graham, Cornell University, United States

                *Correspondence: Changzhen Wang wangchangzhenying@ 123456163.com

                This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.00297
                7198892
                32411077
                12169818-bce0-4f75-b2e3-c8b587c4f93d
                Copyright © 2020 Wu and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 January 2019
                : 30 March 2020
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 44, Pages: 10, Words: 5300
                Categories
                Neurology
                Original Research

                Neurology
                mir-155,glioma,pi3k/akt signal pathway,proliferation,migration
                Neurology
                mir-155, glioma, pi3k/akt signal pathway, proliferation, migration

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content825

                Cited by5

                Most referenced authors472