25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs’ biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis.

          Administration of daclizumab, a humanized mAb directed against the IL-2Ralpha chain, strongly reduces brain inflammation in multiple sclerosis patients. Here we show that daclizumab treatment leads to only a mild functional blockade of CD4(+) T cells, the major candidate in multiple sclerosis pathogenesis. Instead, daclizumab therapy was associated with a gradual decline in circulating CD4(+) and CD8(+) T cells and significant expansion of CD56(bright) natural killer (NK) cells in vivo, and this effect correlated highly with the treatment response. In vitro studies showed that NK cells inhibited T cell survival in activated peripheral blood mononuclear cell cultures by a contact-dependent mechanism. Positive correlations between expansion of CD56(bright) NK cells and contraction of CD4(+) and CD8(+) T cell numbers in individual patients in vivo provides supporting evidence for NK cell-mediated negative immunoregulation of activated T cells during daclizumab therapy. Our data support the existence of an immunoregulatory pathway wherein activated CD56(bright) NK cells inhibit T cell survival. This immunoregulation has potential importance for the treatment of autoimmune diseases and transplant rejection and toward modification of tumor immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant activities of enzymatic extracts from brown seaweeds.

            Potential antioxidative activities of enzymatic extracts from seven species of brown seaweeds were evaluated using four different reactive oxygen species (ROS) scavenging assays containing DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical, superoxide anion, hydroxyl radical and hydrogen peroxide scavenging assay. The brown seaweeds were enzymatically hydrolyzed to prepare water-soluble extracts by using five carbohydrate degrading enzymes (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) of commercial and inexpensive enzymes obtained from Novozyme Co. (Novozyme Nordisk, Bagsvaerd, Denmark). The enzymatic extracts exhibited more prominent effects in hydrogen peroxide scavenging activity (approximately 90%) compared to the other scavenging activities and the activity of enzymatic extracts was even higher than that of the commercial antioxidants. In particular, Ultraflo and Alcalase extracts of S. horneri were dose-dependent and thermally stable. Moreover the two enzymatic extracts strongly inhibited DNA damage (approximately 50%). Those extracts showed significantly (p<0.05) remarkable scavenging effects in DPPH free radical scavenging assay and the activity indicated a marked correlation with phenolic contents. From the results, enzymatic extracts of the brown seaweeds might be valuable antioxidative sources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seaweed and human health.

              Seaweeds may have an important role in modulating chronic disease. Rich in unique bioactive compounds not present in terrestrial food sources, including different proteins (lectins, phycobiliproteins, peptides, and amino acids), polyphenols, and polysaccharides, seaweeds are a novel source of compounds with potential to be exploited in human health applications. Purported benefits include antiviral, anticancer, and anticoagulant properties as well as the ability to modulate gut health and risk factors for obesity and diabetes. Though the majority of studies have been performed in cell and animal models, there is evidence of the beneficial effect of seaweed and seaweed components on markers of human health and disease status. This review is the first to critically evaluate these human studies, aiming to draw attention to gaps in current knowledge, which will aid the planning and implementation of future studies.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                13 December 2017
                December 2017
                : 15
                : 12
                : 388
                Affiliations
                [1 ]Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, China; l7syxu@ 123456stu.edu.cn
                [2 ]Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; thxs@ 123456jnu.edu.cn
                Author notes
                [* ]Correspondence: klcheong@ 123456stu.edu.cn ; Tel.: +86-0754-8650-3157
                Author information
                https://orcid.org/0000-0001-8380-0123
                Article
                marinedrugs-15-00388
                10.3390/md15120388
                5742848
                29236064
                1215e1e7-c8b9-492f-89e2-9e9266b85803
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 November 2017
                : 06 December 2017
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                marine algae,polysaccharide,extraction,characterization,structure-function relationship

                Comments

                Comment on this article