0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cross-Task Cognitive Workload Recognition Based on EEG and Domain Adaptation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cognitive workload recognition is pivotal to maintain the operator's health and prevent accidents in the human-robot interaction condition. So far, the focus of workload research is mostly restricted to a single task, yet cross-task cognitive workload recognition has remained a challenge. Furthermore, when extending to a new workload condition, the discrepancy of electroencephalogram (EEG) signals across various cognitive tasks limits the generalization of the existed model. To tackle this problem, we propose to construct the EEG-based cross-task cognitive workload recognition models using domain adaptation methods in a leave-one-task-out cross-validation setting, where we view any task of each subject as a domain. Specifically, we first design a fine-grained workload paradigm including working memory and mathematic addition tasks. Then, we explore four domain adaptation methods to bridge the discrepancy between the two different tasks. Finally, based on the supporting vector machine classifier, we conduct experiments to classify the low and high workload levels on a private EEG dataset. Experimental results demonstrate that our proposed task transfer framework outperforms the non-transfer classifier with improvements of 3% to 8% in terms of mean accuracy, and the transfer joint matching (TJM) consistently achieves the best performance.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

          We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Domain adaptation via transfer component analysis.

              Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a reproducing kernel Hilbert space using maximum mean miscrepancy. In the subspace spanned by these transfer components, data properties are preserved and data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. Furthermore, in order to uncover the knowledge hidden in the relations between the data labels from the source and target domains, we extend TCA in a semisupervised learning setting, which encodes label information into transfer components learning. We call this extension semisupervised TCA. The main contribution of our work is that we propose a novel dimensionality reduction framework for reducing the distance between domains in a latent space for domain adaptation. We propose both unsupervised and semisupervised feature extraction approaches, which can dramatically reduce the distance between domain distributions by projecting data onto the learned transfer components. Finally, our approach can handle large datasets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach are verified by experiments on five toy datasets and two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
                Bookmark

                Author and article information

                Contributors
                Journal
                IEEE Transactions on Neural Systems and Rehabilitation Engineering
                IEEE Trans. Neural Syst. Rehabil. Eng.
                Institute of Electrical and Electronics Engineers (IEEE)
                1534-4320
                1558-0210
                2022
                2022
                : 30
                : 50-60
                Article
                10.1109/TNSRE.2022.3140456
                34986098
                11e378c6-1ca0-4f22-99d3-e8aa507d6b5c
                © 2022

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,793

                Cited by9

                Most referenced authors707