2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Platinum Prodrug Nanoparticles with COX‐2 Inhibition Amplify Pyroptosis for Enhanced Chemotherapy and Immune Activation of Pancreatic Cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum‐based chemotherapeutic agents can induce pyroptosis via caspase‐3 activation. However, these agents also enhance cyclooxygenase‐2 (COX‐2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy‐induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT‐Pt‐In) containing both indomethacin (In, a COX‐2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self‐assemble into nanoparticles (denoted as Pt‐In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX‐2 expression, hence overcoming the chemoresistance and amplifying cisplatin‐induced pyroptosis. In a pancreatic cancer mouse model, Pt‐In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti‐programmed death ligand (α‐PD‐L1) treatment, Pt‐In NP demonstrate the ability to completely suppress metastatic tumors, transforming “cold tumors” into “hot tumors”. Overall, the sustained release of Pt(IV) and In from Pt‐In NP amplifies platinum‐drug‐induced pyroptosis to elicit long‐term immune responses, hence presenting a generalizable strategy for pancreatic cancer.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control

            Summary Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gasdermin E suppresses tumor growth by activating anti-tumor immunity

              Cleavage of the gasdermins to produce a pore-forming N-terminal fragment causes inflammatory death (pyroptosis) 1 . Caspase-3 cleaves gasdermin E (GSDME, also known as DFNA5), mutated in familial aging-related hearing loss 2 , which converts noninflammatory apoptosis to pyroptosis in GSDME-expressing cells 3–5 . GSDME expression is suppressed in many cancers and reduced GSDME is associated with decreased breast cancer survival 2,6 , suggesting GSDME might be a tumor suppressor. Here we show reduced GSDME function of 20 of 22 tested cancer-associated mutations. Gsdme knockout in GSDME-expressing tumors enhances, while ectopic expression in Gsdme-repressed tumors inhibits, tumor growth. Tumor suppression is mediated by cytotoxic lymphocyte killing since it is abrogated in perforin-deficient or killer lymphocyte-depleted mice. GSDME expression enhances tumor-associated macrophage phagocytosis and the number and functions of tumor-infiltrating NK and CD8+ T lymphocytes. Killer cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase-3. Non-cleavable or pore-defective GSDME are not tumor suppressive. Thus, tumor GSDME is a tumor suppressor by activating pyroptosis, which enhances anti-tumor immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                March 2024
                December 20 2023
                March 2024
                : 36
                : 11
                Affiliations
                [1 ] State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
                [2 ] The People's Hospital of Gaozhou Gaozhou 525200 China
                [3 ] Immunology and Oncology center ICE Bioscience Beijing 100176 China
                [4 ] SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd Beijing 100013 China
                [5 ] Department of Hepatobiliary Surgery China–Japan Friendship Hospital Beijing 100029 China
                [6 ] Beijing National Laboratory for Molecular Sciences Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
                Article
                10.1002/adma.202310456
                38092007
                11c70889-d713-440b-ae82-aa5285087187
                © 2024

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article