26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spike integration and cellular memory in a rhythmic network from Na +/K + pump current dynamics

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The output of a neural circuit results from an interaction between the intrinsic properties of neurons within the circuit and the features of the synaptic connections between them. The plasticity of intrinsic properties has been primarily attributed to modification of ion channel function and/or number. In this study, we demonstrate a mechanism for intrinsic plasticity in rhythmically active Drosophila neurons that is not conductance-based. Larval motor neurons show a long lasting sodium-dependent afterhyperpolarization (AHP) following bursts of action potentials that is mediated by the electrogenic activity of Na +/K + ATPase. This AHP persists for multiple seconds following volleys of action potentials and is able to function as a pattern-insensitive integrator of spike number that is independent of external calcium. This current also interacts with endogenous Shal K + conductances to modulate spike timing for multiple seconds following rhythmic activity, providing a cellular memory of network activity on a behaviorally relevant time scale.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Altered electrical properties in Drosophila neurons developing without synaptic transmission.

          We examine the role of synaptic activity in the development of identified Drosophila embryonic motorneurons. Synaptic activity was blocked by both pan-neuronal expression of tetanus toxin light chain (TeTxLC) and by reduction of acetylcholine (ACh) using a temperature-sensitive allele of choline acetyltransferase (Cha(ts2)). In the absence of synaptic activity, aCC and RP2 motorneurons develop with an apparently normal morphology and retain their capacity to form synapses. However, blockade of synaptic transmission results in significant changes in the electrical phenotype of these neurons. Specifically, increases are seen in both voltage-gated inward Na(+) and voltage-gated outward K(+) currents. Voltage-gated Ca(2+) currents do not change. The changes in conductances appear to promote neuron excitability. In the absence of synaptic activity, the number of action potentials fired by a depolarizing ramp (-60 to +60 mV) is increased and, in addition, the amplitude of the initial action potential fired is also significantly larger. Silencing synaptic input to just aCC, without affecting inputs to other neurons, demonstrates that the capability to respond to changing levels of synaptic excitation is intrinsic to these neurons. The alteration to electrical properties are not permanent, being reversed by restoration of normal synaptic function. Whereas our data suggest that synaptic activity makes little or no contribution to the initial formation of embryonic neural circuits, the electrical development of neurons that constitute these circuits seems to depend on a process that requires synaptic activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones.

            1. The physiological and functional features of time-dependent anomalous rectification activated by hyperpolarization and the current which underlies it, Ih, were examined in guinea-pig and cat thalamocortical relay neurones using in vitro intracellular recording techniques in thalamic slices. 2. Hyperpolarization of the membrane from rest with a constant-current pulse resulted in time-dependent rectification, expressed as a depolarizing sag of the membrane potential back towards rest. Under voltage clamp conditions, hyperpolarizing steps to membrane potentials negative to approximately -60 mV were associated with the activation of a slow inward current, Ih, which showed no inactivation with time. 3. The activation curve of the conductance underlying Ih was obtained through analysis of tail currents and ranged from -60 to -90 mV, with half-activation occurring at -75 mV. The time course of activation of Ih was well fitted by a single-exponential function and was strongly voltage dependent, with time constants ranging from greater than 1-2 s at threshold to an average of 229 ms at -95 mV. The time course of de-activation was also described by a single-exponential function, was voltage dependent, and the time constant ranged from an average of 1000 ms at -80 mV to 347 ms at -55 mV. 4. Raising [K+]o from 2.5 to 7.5 mM enhanced, while decreasing [Na+]o from 153 to 26 mM reduced, the amplitude of Ih. In addition, reduction of [Na+]o slowed the rate of Ih activation. These results indicate that Ih is carried by both Na+ and K+ ions, which is consistent with the extrapolated reversal potential of -43 mV. Replacement of Cl- in the bathing medium with isethionate shifted the chloride equilibrium potential positive by approximately 30-70 mV, evoked an inward shift of the holding current at -50 mV, and resulted in a marked reduction of instantaneous currents as well as Ih, suggesting a non-specific blocking action of impermeable anions. 5. Local (2-10 mM in micropipette) or bath (1-2 mM) applications of Cs+ abolished Ih over the whole voltage range tested (-60 to -110 mV), with no consistent effects on instantaneous currents. Barium (1 mM, local; 0.3-0.5 mM, bath) evoked a steady inward current, reduced the amplitude of instantaneous currents, and had only weak suppressive effects on Ih. 6. Block of Ih with local application of Cs+ resulted in a hyperpolarization of the membrane from the resting level, a decrease in apparent membrane conductance, and a block of the slow after-hyperpolarization that appears upon termination of depolarizing membrane responses, indicating that Ih contributes substantially to the resting and active membrane properties of thalamocortical relay neurones.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activity-dependent changes in the intrinsic properties of cultured neurons.

              Learning and memory arise through activity-dependent modifications of neural circuits. Although the activity dependence of synaptic efficacy has been studied extensively, less is known about how activity shapes the intrinsic electrical properties of neurons. Lobster stomatogastric ganglion neurons fire in bursts when receiving synaptic and modulatory input but fire tonically when pharmacologically isolated. Long-term isolation in culture changed their intrinsic activity from tonic firing to burst firing. Rhythmic stimulation reversed this transition through a mechanism that was mediated by a rise in intracellular calcium concentration. These data suggest that neurons regulate their conductances to maintain stable activity patterns and that the intrinsic properties of a neuron depend on its recent history of activation.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nature neuroscience
                1097-6256
                1546-1726
                22 December 2009
                6 December 2009
                January 2010
                1 July 2010
                : 13
                : 1
                : 53-59
                Affiliations
                Brandeis University, Department of Biology, National Center of Behavioral Genomics and Volen Center for Complex Systems, Waltham, MA 02454-9110
                Article
                nihpa165646
                10.1038/nn.2444
                2839136
                19966842
                11a342c9-2104-43fc-8781-1dc5afc5e45c

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R01 MH067284-07 ||MH
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R01 MH067284-06A1 ||MH
                Categories
                Article

                Neurosciences
                rhythmic network,spike counter,na+/k+ atpase,after-hyperpolarization,neuronal plasticity,central pattern generators

                Comments

                Comment on this article