10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid emergence of multidrug resistant microorganisms has become one of the most critical threats to public health. A decrease in the effectiveness of available antibiotics has led to the failure of infection control, resulting in a high risk of death. Among several alternatives, antimicrobial peptides (AMPs) serve as potential alternatives to antibiotics to resolve the emergence and spread of multidrug-resistant pathogens. These small proteins exhibit potent antimicrobial activity and are also an essential component of the immune system. Although several AMPs have been reported and characterized, studies associated with their potential medical applications are limited. This review highlights the novel sources of AMPs with high antimicrobial activities, including the entomopathogenic nematode/bacterium (EPN/EPB) symbiotic complex. Additionally, the AMPs derived from insects, nematodes, and marine organisms and the design of peptidomimetic antimicrobial agents that can complement the defects of therapeutic peptides have been used as a template.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial peptides of multicellular organisms.

          Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drugs for bad bugs: confronting the challenges of antibacterial discovery.

            The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              APD3: the antimicrobial peptide database as a tool for research and education

              The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                14 July 2021
                2021
                : 12
                : 555022
                Affiliations
                [1] 1Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University , Guangzhou, China
                [2] 2Department of Biotechnology, Sarguja University , Ambikapur, India
                [3] 3SRM Research Institute, SRM Institute of Science and Technology , Kattankulathur, India
                [4] 4Department of Biotechnology, Mizoram University , Aizawl, India
                Author notes

                Edited by: András Fodor, University of Szeged, Hungary

                Reviewed by: Maurizio Francesco Brivio, University of Insubria, Italy; Sinosh Skariyachan, St. Pius X College, India

                *Correspondence: Surajit De Mandal, surajit_micro@ 123456yahoo.co.in

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.555022
                8318700
                34335484
                1185aea6-4b75-4735-9887-fb7432f4eb93
                Copyright © 2021 De Mandal, Panda, Murugan, Xu, Senthil Kumar and Jin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 April 2020
                : 14 June 2021
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 203, Pages: 16, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Microbiology
                Review

                Microbiology & Virology
                antimicrobial peptides,multidrug-resistant pathogens,insects,nematodes,marine

                Comments

                Comment on this article