28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer.

          Results

          Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion.

          Conclusion

          Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in vivo studies are required to verify this hypothesis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Translation of new cancer treatments from pet dogs to humans.

          Naturally occurring cancers in pet dogs and humans share many features, including histological appearance, tumour genetics, molecular targets, biological behaviour and response to conventional therapies. Studying dogs with cancer is likely to provide a valuable perspective that is distinct from that generated by the study of human or rodent cancers alone. The value of this opportunity has been increasingly recognized in the field of cancer research for the identification of cancer-associated genes, the study of environmental risk factors, understanding tumour biology and progression, and, perhaps most importantly, the evaluation and development of novel cancer therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of fascin in filopodial protrusion

            In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t 1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dog models of naturally occurring cancer.

              Studies using dogs provide an ideal solution to the gap in animal models for natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has a vastly reduced genetic variation compared with humans; this simplifies disease mapping and pharmacogenomics. Dogs age five- to eight-fold faster than do humans, share environments with their owners, are usually kept until old age and receive a high level of health care. Farseeing investigators recognized this potential and, over the past decade, have developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here, we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                8 October 2013
                : 8
                : 10
                : e76789
                Affiliations
                [1 ]Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                [2 ]Department of Animal Environment Biology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
                [3 ]School of Chemistry, National University of Ireland, Galway, Ireland
                [4 ]Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                Wake Forest University, School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KM DL TM PM MK. Performed the experiments: KM DL MG MB AH KP MK. Analyzed the data: KM DL MG TM PM MK. Contributed reagents/materials/analysis tools: KM DL MG TM PM MK. Wrote the manuscript: KM DL PM MK.

                Article
                PONE-D-13-20982
                10.1371/journal.pone.0076789
                3792885
                24116159
                10ff0c3e-e4b9-4d10-9282-a87f87e7bee7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 May 2013
                : 4 September 2013
                Funding
                This work was supported by grant number N N308 574940 from the Ministry of Sciences and Higher Education of Poland and Science Foundation Ireland (grant number 07/IN.1/B966). The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number PIEF-GA-2011-299042. This work was supported by COST Action CM1106. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article