OBJETIVO: analisar a qualidade preditiva de modelos computacionais para a diferenciação de tecidos cólicos, construídos a partir da representação de Imagens de Coloscopia (IC) como Matrizes de Co-ocorrência (MC). MATERIAIS E MÉTODOS: os modelos foram construídos aplicando técnicas de análise de imagens e de inteligência artificial. Foram utilizadas 67 IC, contendo pólipos, a partir das quais foram extraídas uma imagem da parte de tecido de pólipo e outra de tecido sem pólipo adjacente, totalizando 134 imagens. Para cada imagem, foram construídas MC para diferentes valores do parâmetro distância, D = 1 a 5, e extraídas 11 características de textura. Com essa representação, foram criados cinco modelos computacionais baseados em árvores de decisão. Os modelos foram avaliados utilizando: (a) validação cruzada e (b) tabelas de contingência. RESULTADOS: na análise (a), o modelo de D = 3 apresentou o menor erro médio (22,25% ± 11,85%). Na análise (b), os modelos de D = 1 e 3 apresentaram os melhores valores de precisão. CONCLUSÃO: os valores do parâmetro de distância D = 1 e 3 apresentaram os modelos com as melhores qualidades preditivas. Os resultados mostraram que os modelos construídos apresentaram-se promissores para a construção de sistemas computacionais de suporte à decisão.
PURPOSE: to evaluate the predictive quality of computational models to differentiate colic tissues, based on Cooccorrurence Matrices (MC) representation of Coloscopic Images (IC). MATERIALS AND METHODS: image analysis and artificial intelligence methods were employed to construct computational models. Sixty seven IC images, containing polyp, were considered in this work, from which a part containing a polypus and another without it were collected given origin to 134 images. For each one of these, different MC were constructed considering five distance parameters (D = 1 to 5) and the extraction of 11 texture characteristics. With this representation, five computational models were generated based on decision trees. These models were evaluated using two techniques: (a) cross-validation and (b) contingency tables. RESULTS: for the (a) analysis, the model with D = 3 presented the smaller average error (22.25% ± 11.85%). For the (b) analysis, models with D = 1 and 3 presented the best precision values. CONCLUSION: parameters D = 1 and 3 presented models with the best predictive qualities. Results showed that the constructed models were promising to be applied within decision making computational systems.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.