Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arginine methylation: the promise of a ‘silver bullet’ for brain tumours?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT–protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.

          In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The nuclear factor NF-kappaB pathway in inflammation.

            The nuclear factor NF-kappaB pathway has long been considered a prototypical proinflammatory signaling pathway, largely based on the role of NF-kappaB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules. In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-kappaB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway. NF-kappaB has long been considered the "holy grail" as a target for new anti-inflammatory drugs; however, these recent studies suggest this pathway may prove a difficult target in the treatment of chronic disease. In this article, we discuss the role of NF-kappaB in inflammation in light of these recent studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PhosphoSitePlus, 2014: mutations, PTMs and recalibrations

              PhosphoSitePlus® (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330 000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1 000 000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The ‘Regulatory sites’ dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The ‘PTMVar’ dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25 000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites.
                Bookmark

                Author and article information

                Contributors
                p.beltran-alvarez@hull.ac.uk
                Journal
                Amino Acids
                Amino Acids
                Amino Acids
                Springer Vienna (Vienna )
                0939-4451
                1438-2199
                6 January 2021
                6 January 2021
                2021
                : 53
                : 4
                : 489-506
                Affiliations
                GRID grid.9481.4, ISNI 0000 0004 0412 8669, Department of Biomedical Sciences, , University of Hull, ; Hull, UK
                Author notes

                Handling editor: D. Tsikas.

                Author information
                http://orcid.org/0000-0001-8136-8963
                Article
                2937
                10.1007/s00726-020-02937-x
                8107164
                33404912
                109fcf6d-e382-46d9-a93b-cff427a054c3
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 October 2020
                : 21 December 2020
                Funding
                Funded by: Allam PhD scholarship, University of Hull
                Funded by: Yorkshire Brain Tumour Charity
                Award ID: PhD scholarship
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Austria, part of Springer Nature 2021

                Genetics
                arginine methylation,brain tumours,glioblastoma,inhibitors,post-translational modifications,protein arginine methyltransferases

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content296

                Cited by11

                Most referenced authors2,889