10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Necdin, one of the important pathway proteins in the regulation of osteosarcoma progression by microRNA-200c

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          MicroRNA-200c (miR-200c) generally acts as a tumor suppressor in multiple cancer types and a promising therapeutic target in tumorigenesis. However, only a few studies have explained the role of miR-200c in the development of osteosarcoma (OS). In this study, we investigated the role of miR-200c in OS progression and identified the regulatory pathway protein NDN involved in inhibiting the occurrence and development of OS. Firstly, we found that miR-200c is downregulated in OS cells and tissues. As well, in vitro and in vivo experiments showed that upregulating miR-200c inhibits the proliferation, invasion, metastasis of Saos-2 cells, promotes the apoptosis of Saos-2 cells and suppresses tumor growth in mice, indicating miR-200c plays a major role in regulating the OS progression. Furthermore, bioinformatics analysis showed that an anti-tumor protein, necdin (NDN), might be a potential target by miR-200c. To verify this hypothesis, we measured the expression level of NDN in OS cells and tissues and found NDN is downregulated, suggesting NDN is functional in OS progression. Moreover, we found that the expression levels of NDN and miR-200c in in vivo and in vitro experiments were positively correlated. However, the results of dual-luciferase reporter gene experiment showed miR-200c does not directly act on the 3ʹ untranslated region (UTR) of NDN gene, indicating that NDN might be an important pathway protein which regulates OS progression in the presence of miR-200c. Therefore, miR-200c/NDN could be potential targets for developing effective treatment against OS.

          Graphical abstract

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ImageJ2: ImageJ for the next generation of scientific image data

            Background ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software’s ability to handle the requirements of modern science. Results We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generation ImageJ, called “ImageJ2” in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. Conclusions Scientific imaging benefits from open-source programs that advance new method development and deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and emerging scientific requirements have posed corresponding challenges for ImageJ’s development. The described improvements provide a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and expanding collaborations with other popular scientific software suites. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1934-z) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols.

              To determine demographic data and define prognostic factors for long-term outcome in patients presenting with high-grade osteosarcoma of bone with clinically detectable metastases at initial presentation. Of 1,765 patients with newly diagnosed, previously untreated high-grade osteosarcomas of bone registered in the neoadjuvant Cooperative Osteosarcoma Study Group studies before 1999, 202 patients (11.4%) had proven metastases at diagnosis and therefore were enrolled onto an analysis of demographic-, tumor-, and treatment-related variables, response, and survival. The intended therapeutic strategy included pre- and postoperative multiagent chemotherapy as well as aggressive surgery of all resectable lesions. With a median follow-up of 1.9 years (5.5 years for survivors), 60 patients were alive, 37 of whom were in continuously complete surgical remission. Actuarial overall survival rates at 5 and 10 (same value for 15) years were 29% (SE = 3%) and 24% (SE = 4%), respectively. In univariate analysis, survival was significantly correlated with patient age, site of the primary tumor, number and location of metastases, number of involved organ systems, histologic response of the primary tumor to preoperative chemotherapy, and completeness and time point of surgical resection of all tumor sites. However, after multivariate Cox regression analysis, only multiple metastases at diagnosis (relative hazard rate [RHR] = 2.3) and macroscopically incomplete surgical resection (RHR = 2.4) remained significantly associated with inferior outcomes. The number of metastases at diagnosis and the completeness of surgical resection of all clinically detected tumor sites are of independent prognostic value in patients with proven primary metastatic osteosarcoma.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                25 March 2022
                2022
                25 March 2022
                : 13
                : 4
                : 8915-8925
                Affiliations
                [a ]Second Clinical Medical College, Shanxi Medical University; , Taiyuan, ShanXi, China
                [b ]Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University; , Taiyuan, Shanxi, China
                [c ]First Clinical Medical College, Shanxi Medical University; , Taiyuan, ShanXi, China
                [d ]Department of Orthopaedics, Xiamen University; , Xiamen, Fujian, China
                Author notes
                CONTACT Yi Feng fengyi160@ 123456126.com Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University; , Taiyuan, ShanXi 030001, China
                Author information
                https://orcid.org/0000-0002-6770-7399
                Article
                2056693
                10.1080/21655979.2022.2056693
                9161937
                35333696
                109446ab-5856-4fed-b66e-1b0e2e14b49b
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 4, References: 40, Pages: 11
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                osteosarcoma,microrna-200c,necdin,proliferation,migration,invasion
                Biomedical engineering
                osteosarcoma, microrna-200c, necdin, proliferation, migration, invasion

                Comments

                Comment on this article