0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient post-processing of electromagnetic plane wave simulations to model arbitrary structured beams incident on axisymmetric structures

      ,
      New Journal of Physics
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of an optical beam interacting with material structures is a fundamental of nanophotonics. Computational electromagnetic solvers facilitate the rapid calculation of the scattering from material structures with arbitrary geometry and complexity, but have limited efficiency when employing structured excitation fields. We have developed a post-processing method and package that can efficiently calculate the full three-dimensional electric and magnetic fields for any optical beam incident on a particle or structure with at least one axis of continuous rotational symmetry, called an axisymmetric body (such as a sphere, cylinder, cone, torus or surface). Provided an initial batch of plane wave simulations is computed, this open-source package combines data from computational electromagnetic solvers in a post-processing fashion using the angular spectrum representation to create arbitrarily structured beams, including vector vortex beams. Any and all possible incident beams can be generated from the initial batch of PWSs, without the need for further simulations. This allows for efficiently performing parameter sweeps such as changing the angle of illumination or translating the particle position relative to the beam, all in post-processing, with no need for additional time-consuming simulations. We demonstrate some applications by numerically calculating optical force and torque maps for a spherical plasmonic nanoparticle in a tightly focused Gaussian beam, a plasmonic nanocone in an azimuthally polarised beam and compute the fields of a non-paraxial Laguerre–Gaussian vortex beam reflecting on a multilayered surface. We believe this package, called BEAMS, is a valuable tool for rapidly quantifying electromagnetic systems that are beyond traditional analytical methods.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A revolution in optical manipulation.

            Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Observation of Gravitational Waves from a Binary Black Hole Merger

              On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Journal of Physics
                New J. Phys.
                IOP Publishing
                1367-2630
                October 23 2023
                October 01 2023
                October 23 2023
                October 01 2023
                : 25
                : 10
                : 103043
                Article
                10.1088/1367-2630/ad006e
                106d6791-1b4a-41d6-986a-9e94fab177e8
                © 2023

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article