Search for authorsSearch for similar articles
34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nodal Spin Density Wave and band topology of the FeAs based materials

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recently discovered FeAs-based materials exhibit a (π,0) Spin Density Wave (SDW) in the undoped state, which gives way to superconductivity upon doping. Here we show that due to an interesting topological feature of the band structure, the SDW state cannot acquire a full gap. This is demonstrated within the SDW mean-field theory of both a simplified two band model and a more realistic 5-band model. The positions of the nodes are different in the two models and can be used to detected the validity of each model.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Spin Hall Effect in Graphene

            We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the quantized transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are non chiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder and symmetry breaking fields are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides

              We consider the iron pnictides in terms of a proximity to a Mott insulator. The superexchange interactions contain competing nearest-neighbor and next-nearest-neighbor components. In the undoped parent compound, these frustrated interactions lead to a two-sublattice collinear antiferromagnet (each sublattice forming a Neel ordering), with a reduced magnitude for the ordered moment. Electron or hole doping, together with the frustration effect, suppresses the magnetic ordering and allows a superconducting state. The exchange interactions favor a d-wave superconducting order parameter; in the notation appropriate for the Fe square lattice, its orbital symmetry is dxy. A number of existing and future experiments are discussed in light of the theoretical considerations.
                Bookmark

                Author and article information

                Journal
                23 May 2008
                2009-03-15
                Article
                10.1103/PhysRevB.79.014505
                0805.3535
                106ad41c-6019-495f-ab08-9507cb42189b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. B 79, 014505 (2009)
                rewritten for clarity
                cond-mat.supr-con cond-mat.str-el

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content167

                Cited by67

                Most referenced authors24