0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      VqBGH40a isolated from Chinese wild Vitis quinquangularis degrades trans-piceid and enhances trans-resveratrol.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol (3,5,4'-trihydroxy-stilbene) is a phytoalexin that can prevent plants from pathogen attacks. Piceid is the glycosylation product of resveratrol and the main storage form of stilbenes in grapevines. Here, we reported the function of a β-glycoside hydrolase gene, VqBGH40a, from the Chinese wild grapevine Vitis quinquangularis accession Danfeng-2 in the regulation of plant resistance to powdery mildew (Uncinula necator). VqBGH40a belonging to β-glycoside hydrolase family 1 encoded 506 amino acids and was located on the cytomembrane. Its optimal induction condition was 28 or 30℃, for 4 h, with 0.1 mM IPTG in a prokaryotic expression system. Enzyme activity detection showed that purified VqBGH40a could hydrolyze trans-piceid to form trans-resveratrol in vitro. VqBGH40a was transiently overexpressed in Danfeng-2 leaves and then artificially inoculated with powdery mildew showed that VqBGH40a protein could hydrolyze trans-piceid in vivo. Additionally, a comparative family analysis between VqBGH40a and 38 VviBGHs was performed. Overall, these results demonstrate that VqBGH40a can hydrolyze trans-piceid, enhance trans-resveratrol content, and participate in the defense mechanism of grapevine against powdery mildew.

          Related collections

          Author and article information

          Journal
          Plant Sci
          Plant science : an international journal of experimental plant biology
          1873-2259
          0168-9452
          Sep 2021
          : 310
          Affiliations
          [1 ] State Key Laboratory of Crop Stress Biology for Arid Areas, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address: yanchaohui@nwafu.edu.cn.
          [2 ] State Key Laboratory of Crop Stress Biology for Arid Areas, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address: yangna96putao@163.com.
          [3 ] State Key Laboratory of Crop Stress Biology for Arid Areas, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address: WangxqVvSs@163.com.
          [4 ] State Key Laboratory of Crop Stress Biology for Arid Areas, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture of China, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address: wangyj@nwsuaf.edu.cn.
          Article
          S0168-9452(21)00185-0
          10.1016/j.plantsci.2021.110989
          34315603
          10338d68-77be-4186-a7d9-e4cb562aa6b7
          History

          Disease resistance,Grapevine,β-Glucosidase hydrolase,Trans-resveratrol,Trans-piceid

          Comments

          Comment on this article