13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury : Invited Review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parenteral nutrition (PN) has revolutionized the care of patients with intestinal failure by providing nutrition intravenously. Worldwide, PN remains a standard tool of nutrition delivery in neonatal, pediatric, and adult patients. Though the benefits are evident, patients receiving PN can suffer serious cholestasis due to lack of enteral feeding and sometimes have fatal complications from liver injury and gut atrophy, including PN-associated liver disease or intestinal failure–associated liver disease. Recent studies into gut-systemic cross talk via the bile acid–regulated farnesoid X receptor (FXR)–fibroblast growth factor 19 (FGF19) axis, gut microbial control of the TGR5–glucagon-like peptide (GLP) axis, sepsis, and role of prematurity of hepatobiliary receptors are greatly broadening our understanding of PN-associated injury. It has also been shown that the composition of ω −6/ ω −3 polyunsaturated fatty acids given parenterally as lipid emulsions can variably drive damage to hepatocytes and cell integrity. This manuscript reviews the mechanisms for the multifactorial pathogenesis of liver disease and gut injury with PN and discusses novel ameliorative strategies.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Bile salt biotransformations by human intestinal bacteria.

          Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas bile acid 7-dehydroxylation appears restricted to a limited number of intestinal anaerobes representing a small fraction of the total colonic flora. Microbial enzymes modifying bile salts differ between species with respect to pH optima, enzyme kinetics, substrate specificity, cellular location, and possibly physiological function. Crystallization, site-directed mutagenesis, and comparisons of protein secondary structure have provided insight into the mechanisms of several bile acid-biotransforming enzymatic reactions. Molecular cloning of genes encoding bile salt-modifying enzymes has facilitated the understanding of the genetic organization of these pathways and is a means of developing probes for the detection of bile salt-modifying bacteria. The potential exists for altering the bile acid pool by targeting key enzymes in the 7alpha/beta-dehydroxylation pathway through the development of pharmaceuticals or sequestering bile acids biologically in probiotic bacteria, which may result in their effective removal from the host after excretion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of incretins: GLP-1 and GIP.

            This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The published literature was reviewed, with emphasis on recent advances in our understanding of the biology of GIP and GLP-1. GIP and GLP-1 are both secreted within minutes of nutrient ingestion and facilitate the rapid disposal of ingested nutrients. Both peptides share common actions on islet beta-cells acting through structurally distinct yet related receptors. Incretin-receptor activation leads to glucose-dependent insulin secretion, induction of beta-cell proliferation, and enhanced resistance to apoptosis. GIP also promotes energy storage via direct actions on adipose tissue, and enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis. In contrast, GLP-1 exerts glucoregulatory actions via slowing of gastric emptying and glucose-dependent inhibition of glucagon secretion. GLP-1 also promotes satiety and sustained GLP-1-receptor activation is associated with weight loss in both preclinical and clinical studies. The rapid degradation of both GIP and GLP-1 by the enzyme dipeptidyl peptidase-4 has led to the development of degradation-resistant GLP-1-receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes. These agents decrease hemoglobin A1c (HbA1c) safely without weight gain in subjects with type 2 diabetes. GLP-1 and GIP integrate nutrient-derived signals to control food intake, energy absorption, and assimilation. Recently approved therapeutic agents based on potentiation of incretin action provide new physiologically based approaches for the treatment of type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homeostatic Immunity and the Microbiota

              The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NCP
                Nutrition in Clinical Practice
                Nutrition in Clinical Practice
                Wiley
                08845336
                February 2020
                February 2020
                December 23 2019
                : 35
                : 1
                : 63-71
                Affiliations
                [1 ]Department of Pediatrics; St. Louis University School of Medicine; Cardinal Glennon Children's Medical Center; St. Louis Missouri USA
                Article
                10.1002/ncp.10461
                7014933
                31872510
                1017694b-49f2-4823-9ae4-09610c03eb0f
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article