0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endophytic fungi of Tradescantia pallida mediated targeting of Multi-Drug resistant human pathogens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance (AMR) has emerged as one of the most serious worldwide public health issues of the twenty-first century. The expeditious rise of AMR has urged the development of new, natural effective therapeutic strategies against drug-resistant pathogens. Endophytic fungi, which inhabit distinctive environments like endosymbiotic relationships with plants, are gaining interest as alternative reservoirs for novel compounds that exhibit a broad range of chemical diversity and unique modes of action by releasing a variety of secondary metabolites with antimicrobial properties. The objective of the current research was to isolate and identify endophytic fungal species from leaves of Tradescantia pallida and to investigate their antagonistic effects on Multi-Drug-Resistant human pathogens. Endophytic fungus TPL11 and TPL14 showed maximum inhibition in agar plug and agar well diffusion assay. The ethyl acetate crude extract effectively suppressed growth of MRSA (Methicillin-resistant Staphylococcus aureus) ATCC 43300,700699 strains and VRE (Vancomycin-resistant Enterococcus) with the Inhibition zone of 22 ± 0.05, 23 ± 0.11 and 24 ± 0.11 mm respectively with minimum inhibitory concentration (MIC) of 3.125 µg/mL. Whereas TPL11 fungus revealed antibiosis of 22 ± 0.05 and 21 ± 0.15 mm against MRSA(ATCC 43300,700699) and 24 ± 0.05 mm for VRE with MIC of 6.25,3.125 and 1.56 μg/mL respectively. The MIC (Minimum inhibitory concentration) index further confirmed that both the extracts were bacteriostatic against MRSA and bactericidal against VRE. The isolates TPL11 and TPL14 were identified as Fusarium oxysporum and Nigrospora sphaerica by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the first report to reveal the presence of F.oxysporum and N.sphaerica in T.pallida and their antibacterial activity.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L.

          In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3–12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1.18 log10 CFU, while ENF22 could colonize from 0.98 to 1.24 Log10CFU/g root in rice and 1.01 to 1.24Log10CFU/g root in maize, just the reverse observed in Acremonium sp. Therefore, both the organism has the potency of a promising Bio-resource agent, that we must definitely explore to fill the gap in the agriculture industry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Endophytic fungi: a reservoir of antibacterials

            Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as “handed down data” in family generations. May need a second, third and more “in-depth investigations?”
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              International Journal of Pharmaceutical Sciences and Research

                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                20 January 2024
                March 2024
                20 January 2024
                : 31
                : 3
                : 103937
                Affiliations
                [a ]School of Biosciences and Technology, Vellore Institute of Technology, Vellore 14, India
                [b ]VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, India
                Author notes
                [* ]Corresponding author at: VAIAL, Vellore Institute of Technology, Vellore, India asathiavelu@ 123456vit.ac.in
                Article
                S1319-562X(24)00015-9 103937
                10.1016/j.sjbs.2024.103937
                10863426
                38352729
                0ffee524-dd7a-4d15-85fd-683e1bcc280a
                © 2024 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 September 2023
                : 9 January 2024
                : 19 January 2024
                Categories
                Original Article

                endophytic fungi,nigrospora sphaerica,fusarium oxysporum,mdr,human pathogens,antibiotic resistance,pharmacology

                Comments

                Comment on this article