0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Mycorrhizal Inoculation on Melon Plants under Deficit Irrigation Regimes

      , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The shortage of good quantity and quality of water for irrigated agriculture is a major problem in arid and semiarid regions. To deal with this problem, deficit irrigation (DI) or arbuscular mycorrhizal fungi (AMF) inoculation have been proposed and adopted for many crops as a tool to save water, or to improve crop tolerance to drought stress. An experiment was conducted for two consecutive years to evaluate the effect of mycorrhizal inoculation on the physiological, morphological, yield, and quality characteristics of melon plants grown under deficit irrigation. Melon crop (Cucumis melo L. cv. Helios) was grown under field conditions adopting a split-plot design with four replications, where DI was the main factor and AMF inoculation was the secondary factor. DI treatments consisted of applying 60%, 80%, or 100% of crop evapotranspiration (ETc) on melon plants inoculated or not with a commercial biostimulant containing 50% of Rhizophagus irregularis, and 50% of Funneliformis mosseae. Moderate and severe deficit irrigation significantly reduced the relative water content, stomatal conductance, yield, nitrogen applied efficiency (NAE), and fruit firmness of the uninoculated plants, but significantly increased irrigation water use efficiency (IWUE) and the ascorbic acid content of the fruit. AMF had a positive effect on plant tolerance to moderate water stress, and on some fruit quality parameters (fruit length, firmness, and sugar content). The combined use of moderate deficit irrigation (80%) and soil inoculation with AMF on melon plants allows water savings without affecting fruit yield, and increases IWUE, NAE, and some fruit quality characteristics (firmness, SSC, and SSC/TA). Furthermore, the use of AMF plants could be worth it to reduce the yield loss and increase fruit quality, even with severe deficit irrigation (60%).

          Related collections

          Most cited references109

          • Record: found
          • Abstract: not found
          • Article: not found

          Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding plant responses to drought — from genes to the whole plant

            Functional Plant Biology, 30(3), 239 In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought — such as phenology, root size and depth, hydraulic conductivity and the storage of reserves — are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype–phenotype gap to be bridged, which is essential for faster progress in stress biology research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions

              In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                February 2023
                February 01 2023
                : 13
                : 2
                : 440
                Article
                10.3390/agronomy13020440
                0fec71c7-3a6e-4775-85f7-b3afc2258355
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article