61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques.

          Results

          Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500.

          Conclusions

          Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          How host-microbial interactions shape the nutrient environment of the mammalian intestine.

          Humans and other mammals are colonized by a vast, complex, and dynamic consortium of microorganisms. One evolutionary driving force for maintaining this metabolically active microbial society is to salvage energy from nutrients, particularly carbohydrates, that are otherwise nondigestible by the host. Much of our understanding of the molecular mechanisms by which members of the intestinal microbiota degrade complex polysaccharides comes from studies of Bacteroides thetaiotaomicron, a prominent and genetically manipulatable component of the normal human and mouse gut. Colonization of germ-free mice with B. thetaiotaomicron has shown how this anaerobe modifies many aspects of intestinal cellular differentiation/gene expression to benefit both host and microbe. These and other studies underscore the importance of understanding precisely how nutrient metabolism serves to establish and sustain symbiotic relationships between mammals and their bacterial partners.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular view of microbial diversity and the biosphere.

            N Pace (1997)
            Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya. The general properties of representatives of the three domains indicate that the earliest life was based on inorganic nutrition and that photosynthesis and use of organic compounds for carbon and energy metabolism came comparatively later. The application of molecular-phylogenetic methods to study natural microbial ecosystems without the traditional requirement for cultivation has resulted in the discovery of many unexpected evolutionary lineages; members of some of these lineages are only distantly related to known organisms but are sufficiently abundant that they are likely to have impact on the chemistry of the biosphere.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing

              Humans host complex microbial communities believed to contribute to health maintenance and, when in imbalance, to the development of diseases. Determining the microbial composition in patients and healthy controls may thus provide novel therapeutic targets. For this purpose, high-throughput, cost-effective methods for microbiota characterization are needed. We have employed 454-pyrosequencing of a hyper-variable region of the 16S rRNA gene in combination with sample-specific barcode sequences which enables parallel in-depth analysis of hundreds of samples with limited sample processing. In silico modeling demonstrated that the method correctly describes microbial communities down to phylotypes below the genus level. Here we applied the technique to analyze microbial communities in throat, stomach and fecal samples. Our results demonstrate the applicability of barcoded pyrosequencing as a high-throughput method for comparative microbial ecology.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2011
                2 November 2011
                : 11
                : 244
                Affiliations
                [1 ]University of Oslo, Department of Biology, Centre for Ecological and Evolutionary Synthesis, P.O. Box 1066 Blindern, 0316 Oslo, Norway
                [2 ]University of Oslo, University Hospital HF Ullevaal-Oslo and Faculty of Medicine, Department of Microbiology, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
                Article
                1471-2180-11-244
                10.1186/1471-2180-11-244
                3228714
                22047020
                0fcfa152-7c65-4dfc-957e-3ec5da6a1235
                Copyright ©2011 Siddiqui et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 July 2011
                : 2 November 2011
                Categories
                Research Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article