2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leveraging dynamics informed neural networks for predictive modeling of COVID-19 spread: a hybrid SEIRV-DNNs approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A dynamics informed neural networks (DINNs) incorporating the susceptible-exposed-infectious-recovered-vaccinated (SEIRV) model was developed to enhance the understanding of the temporal evolution dynamics of infectious diseases. This work integrates differential equations with deep neural networks to predict time-varying parameters in the SEIRV model. Experimental results based on reported data from China between January 1, and December 1, 2022, demonstrate that the proposed dynamics informed neural networks (DINNs) method can accurately learn the dynamics and predict future states. Our proposed hybrid SEIRV-DNNs model can also be applied to other infectious diseases such as influenza and dengue, with some modifications to the compartments and parameters in the model to accommodate the related control measures. This approach will facilitate improving predictive modeling and optimizing public health intervention strategies.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep learning.

            Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Multilayer feedforward networks are universal approximators

                Bookmark

                Author and article information

                Contributors
                hifz_din@um.edu.my
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 January 2025
                15 January 2025
                2025
                : 15
                : 2043
                Affiliations
                [1 ]Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, ( https://ror.org/00rzspn62) 50603 Kuala Lumpur, Malaysia
                [2 ]Department of Decision Science, Faculty of Business and Economics, Universiti Malaya, ( https://ror.org/00rzspn62) 50603 Kuala Lumpur, Malaysia
                Article
                85440
                10.1038/s41598-025-85440-1
                11735935
                39814760
                0fbcf07d-8c5a-4f75-89f9-a9ad19c3959e
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 27 August 2024
                : 2 January 2025
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2025

                Uncategorized
                covid-19,transmission dynamics,neural networks,dinns,infectious diseases,computational science

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content121

                Most referenced authors1,966