33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited

      Annals of Botany
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a long-standing controversy as to whether drought limits photosynthetic CO2 assimilation through stomatal closure or by metabolic impairment in C3 plants. Comparing results from different studies is difficult due to interspecific differences in the response of photosynthesis to leaf water potential and/or relative water content (RWC), the most commonly used parameters to assess the severity of drought. Therefore, we have used stomatal conductance (g) as a basis for comparison of metabolic processes in different studies. The logic is that, as there is a strong link between g and photosynthesis (perhaps co-regulation between them), so different relationships between RWC or water potential and photosynthetic rate and changes in metabolism in different species and studies may be 'normalized' by relating them to g. Re-analysing data from the literature using light-saturated g as a parameter indicative of water deficits in plants shows that there is good correspondence between the onset of drought-induced inhibition of different photosynthetic sub-processes and g. Contents of ribulose bisphosphate (RuBP) and adenosine triphosphate (ATP) decrease early in drought development, at still relatively high g (higher than 150 mmol H20 m(-2) s(-1)). This suggests that RuBP regeneration and ATP synthesis are impaired. Decreased photochemistry and Rubisco activity typically occur at lower g (<100 mmol H20 m(-2) s(-1)), whereas permanent photoinhibition is only occasional, occurring at very low g (<50 mmol H20 m(-2) s(-1)). Sub-stomatal CO2 concentration decreases as g becomes smaller, but increases again at small g. The analysis suggests that stomatal closure is the earliest response to drought and the dominant limitation to photosynthesis at mild to moderate drought. However, in parallel, progressive down-regulation or inhibition of metabolic processes leads to decreased RuBP content, which becomes the dominant limitation at severe drought, and thereby inhibits photosynthetic CO2 assimilation.

          Related collections

          Author and article information

          Journal
          Annals of Botany
          Oxford University Press (OUP)
          03057364
          10958290
          February 1 2002
          : 89
          : 2
          : 183-189
          Article
          10.1093/aob/mcf027
          4233792
          12099349
          0fb45ca8-9913-4677-9777-3bf6e69581bb
          © 2002
          History

          Comments

          Comment on this article