66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A surprising level of evolutionary plasticity is revealed by analysis of differences between related yeasts in the mechanisms regulating the essential cellular process of ribosomal gene expression.

          Abstract

          Gene expression variation between species is a major contributor to phenotypic diversity, yet the underlying flexibility of transcriptional regulatory networks remains largely unexplored. Transcription of the ribosomal regulon is a critical task for all cells; in S. cerevisiae the transcription factors Rap1, Fhl1, Ifh1, and Hmo1 form a multi-subunit complex that controls ribosomal gene expression, while in C. albicans this regulation is under the control of Tbf1 and Cbf1. Here, we analyzed, using full-genome transcription factor mapping, the roles, in both S. cerevisiae and C. albicans, of each orthologous component of this complete set of regulators. We observe dramatic changes in the binding profiles of the generalist regulators Cbf1, Hmo1, Rap1, and Tbf1, while the Fhl1-Ifh1 dimer is the only component involved in ribosomal regulation in both fungi: it activates ribosomal protein genes and rDNA expression in a Tbf1-dependent manner in C. albicans and a Rap1-dependent manner in S. cerevisiae. We show that the transcriptional regulatory network governing the ribosomal expression program of two related yeast species has been massively reshaped in cis and trans. Changes occurred in transcription factor wiring with cellular functions, movements in transcription factor hierarchies, DNA-binding specificity, and regulatory complexes assembly to promote global changes in the architecture of the fungal transcriptional regulatory network.

          Author Summary

          Conserved metabolic machineries direct energy production and investment in most life forms. However, variation in the transcriptional regulation of the genes that encode this machinery has been observed and shown to contribute to phenotypic differences between species. Here, we show that the regulatory circuits governing the expression of central metabolic components (in this case the ribosomes) in different yeast species have an unexpected level of evolutionary plasticity. Most transcription factors involved in the regulation of expression of ribosomal genes have in fact been reused in new ways during the evolutionary time separating S. cerevisiae and C. albicans to generate global changes in transcriptional network structures and new ribosomal regulatory complexes.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulatory networks in Saccharomyces cerevisiae.

            We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary changes in cis and trans gene regulation.

              Differences in gene expression are central to evolution. Such differences can arise from cis-regulatory changes that affect transcription initiation, transcription rate and/or transcript stability in an allele-specific manner, or from trans-regulatory changes that modify the activity or expression of factors that interact with cis-regulatory sequences. Both cis- and trans-regulatory changes contribute to divergent gene expression, but their respective contributions remain largely unknown. Here we examine the distribution of cis- and trans-regulatory changes underlying expression differences between closely related Drosophila species, D. melanogaster and D. simulans, and show functional cis-regulatory differences by comparing the relative abundance of species-specific transcripts in F1 hybrids. Differences in trans-regulatory activity were inferred by comparing the ratio of allelic expression in hybrids with the ratio of gene expression between species. Of 29 genes with interspecific expression differences, 28 had differences in cis-regulation, and these changes were sufficient to explain expression divergence for about half of the genes. Trans-regulatory differences affected 55% (16 of 29) of genes, and were always accompanied by cis-regulatory changes. These data indicate that interspecific expression differences are not caused by select trans-regulatory changes with widespread effects, but rather by many cis-acting changes spread throughout the genome.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2010
                March 2010
                9 March 2010
                : 8
                : 3
                : e1000329
                Affiliations
                [1 ]Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
                [2 ]Department of Biology, McGill University, Montreal, Quebec, Canada
                [3 ]Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
                Trinity College Dublin, Ireland
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: HL. Performed the experiments: HL. Analyzed the data: HL HH. Wrote the paper: HL MW. Responsible for all bioinformatics analyses: HH. Developed the Fhl1-Ifh1 co-immunoprecipitations: JM. Performed microarray hybridizations: AS. Edited the manuscript: HH AN.

                [¤]

                Current address: Intracellular Signaling Laboratory, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.

                Article
                09-PLBI-RA-3505R2
                10.1371/journal.pbio.1000329
                2834713
                20231876
                0fa65cac-0399-40c5-9b98-7f2230c49cc9
                Lavoie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 August 2009
                : 3 February 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Gene Expression
                Genetics and Genomics/Microbial Evolution and Genomics

                Life sciences
                Life sciences

                Comments

                Comment on this article