12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Axial Length Elongation on Corneal Biomechanical Property

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: To investigate the correlation between the corneal biomechanical parameter stress-strain index (SSI) and axial length (AL) in moderately elongated eye (MEE) and severely elongated eye (SEE).

          Methods: This study included 117 eyes from 117 participants. Among them, 59 (50.4%) had MEE (AL<26 mm) and 58 (49.6%) had SEE (AL≥26 mm). AL was measured using Lenstar LS-900, and central corneal thickness (CCT) and anterior chamber volume (ACV) were measured using Pentacam. SSI was measured via corneal visualisation Scheimpflug technology (Corvis ST). Kolmogorov-Smirnov test, Student’s t-test, and Pearson and partial correlation analyses were used for statistical analyses.

          Results: The mean (±SD) SSI was 1.08 ± 0.15 in the MEE group and 0.92 ± 0.13 in the SEE group ( p < 0.01). SSI was positively correlated with age (MEE: r = 0.326, p < 0.05; SEE: r = 0.298, p < 0.05) in both groups; it was negatively correlated with AL ( r = −0.476, p < 0.001) in the MEE group but not in the SEE group ( p > 0.05). CCT was negatively correlated with AL ( r = −0.289, p < 0.05) and ACV positively correlated with AL ( r = 0.444, p < 0.001) in the MEE group. Neither CCT nor ACV was correlated with AL ( p > 0.05) in the SEE group.

          Conclusion: Corneal biomechanical parameter SSI, which represents the stiffness of corneal tissue, was lower in the SEE group than in the MEE group. When analyzed separately, SSI was negatively correlated with AL in the MEE group, but not in the SEE group, which may provide insight into different ocular growth patterns between lower myopia and higher myopia.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.

          Myopia is a common cause of vision loss, with uncorrected myopia the leading cause of distance vision impairment globally. Individual studies show variations in the prevalence of myopia and high myopia between regions and ethnic groups, and there continues to be uncertainty regarding increasing prevalence of myopia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IMI – Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies

            Purpose We provide a standardized set of terminology, definitions, and thresholds of myopia and its main ocular complications. Methods Critical review of current terminology and choice of myopia thresholds was done to ensure that the proposed standards are appropriate for clinical research purposes, relevant to the underlying biology of myopia, acceptable to researchers in the field, and useful for developing health policy. Results We recommend that the many descriptive terms of myopia be consolidated into the following descriptive categories: myopia, secondary myopia, axial myopia, and refractive myopia. To provide a framework for research into myopia prevention, the condition of “pre-myopia” is defined. As a quantitative trait, we recommend that myopia be divided into myopia (i.e., all myopia), low myopia, and high myopia. The current consensus threshold value for myopia is a spherical equivalent refractive error ≤ −0.50 diopters (D), but this carries significant risks of classification bias. The current consensus threshold value for high myopia is a spherical equivalent refractive error ≤ −6.00 D. “Pathologic myopia” is proposed as the categorical term for the adverse, structural complications of myopia. A clinical classification is proposed to encompass the scope of such structural complications. Conclusions Standardized definitions and consistent choice of thresholds are essential elements of evidence-based medicine. It is hoped that these proposals, or derivations from them, will facilitate rigorous, evidence-based approaches to the study and management of myopia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Complications of Myopia: A Review and Meta-Analysis

              Purpose To determine the risk between degree of myopia and myopic macular degeneration (MMD), retinal detachment (RD), cataract, open angle glaucoma (OAG), and blindness. Methods A systematic review and meta-analyses of studies published before June 2019 on myopia complications. Odds ratios (OR) per complication and spherical equivalent (SER) degree (low myopia SER –3.00 diopter [D]; moderate myopia SER ≤ –3.00 to > –6.00 D; high myopia SER ≤ –6.00 D) were calculated using fixed and random effects models. Results Low, moderate, and high myopia were all associated with increased risks of MMD (OR, 13.57, 95% confidence interval [CI], 6.18–29.79; OR, 72.74, 95% CI, 33.18–159.48; OR, 845.08, 95% CI, 230.05–3104.34, respectively); RD (OR, 3.15, 95% CI, 1.92–5.17; OR, 8.74, 95% CI, 7.28–10.50; OR, 12.62, 95% CI, 6.65–23.94, respectively); posterior subcapsular cataract (OR, 1.56, 95% CI, 1.32–1.84; OR, 2.55, 95% CI, 1.98–3.28; OR, 4.55, 95% CI, 2.66–7.75, respectively); nuclear cataract (OR, 1.79, 95% CI, 1.08–2.97; OR, 2.39, 95% CI, 1.03–5.55; OR, 2.87, 95% CI, 1.43–5.73, respectively); and OAG (OR, 1.59, 95% CI, 1.33–1.91; OR, 2.92, 95% CI, 1.89–4.52 for low and moderate/high myopia, respectively). The risk of visual impairment was strongly related to longer axial length, higher myopia degree, and age older than 60 years (OR, 1.71, 95% CI, 1.07–2.74; OR, 5.54, 95% CI, 3.12–9.85; and OR, 87.63, 95% CI, 34.50–222.58 for low, moderate, and high myopia in participants aged >60 years, respectively). Conclusions Although high myopia carries the highest risk of complications and visual impairment, low and moderate myopia also have considerable risks. These estimates should alert policy makers and health care professionals to make myopia a priority for prevention and treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                02 December 2021
                2021
                : 9
                : 777239
                Affiliations
                [ 1 ]Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
                [ 2 ]NHC Key Laboratory of Myopia, Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
                [ 3 ]Key Laboratory of Myopia, Shanghai Research Center of Ophthalmology and Optometry, Chinese Academy of Medical Sciences, Shanghai, China
                Author notes

                Edited by: FangJun Bao, Affiliated Eye Hospital of Wenzhou Medical College, China

                Reviewed by: Xiaofei Wang, Beihang University, China

                Kai-Jung Chen, National Chin-Yi University of Technology, Taiwan

                *Correspondence: Zhi Chen, peter459@ 123456aliyun.com ; Ruihua Wei, rwei@ 123456tmu.edu.cn
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Biomechanics, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                777239
                10.3389/fbioe.2021.777239
                8677453
                34926423
                0f96b35a-0bb0-49fa-afab-9937bcfba50d
                Copyright © 2021 Liu, Rong, Zhang, Xue, Du, Wang, Hu, Chen and Wei.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 September 2021
                : 15 November 2021
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Bioengineering and Biotechnology
                Original Research

                corvis st,corneal biomechanics,anterior segment,axial length,myopia

                Comments

                Comment on this article