38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Training the brain to overcome the effect of aging on the human eye

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Presbyopia, from the Greek for aging eye, is, like death and taxes, inevitable. Presbyopia causes near vision to degrade with age, affecting virtually everyone over the age of 50. Presbyopia has multiple negative effects on the quality of vision and the quality of life, due to limitations on daily activities – in particular, reading. In addition presbyopia results in reduced near visual acuity, reduced contrast sensitivity, and slower processing speed. Currently available solutions, such as optical corrections, are not ideal for all daily activities. Here we show that perceptual learning (repeated practice on a demanding visual task) results in improved visual performance in presbyopes, enabling them to overcome and/or delay some of the disabilities imposed by the aging eye. This improvement was achieved without changing the optical characteristics of the eye. The results suggest that the aging brain retains enough plasticity to overcome the natural biological deterioration with age.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments.

          We measured contrast detection thresholds for a foveal Gabor signal flanked by two high contrast Gabor signals. The spatially localized target and masks enabled investigation of space dependent lateral interactions between foveal and neighboring spatial channels. Our data show a suppressive region extending to a radius of two wavelengths, in which the presence of the masking signals have the effect of increasing target threshold. Beyond this range a much larger facilitatory region (up to a distance of ten wavelengths) is indicated, in which contrast thresholds were found to decrease by up to a factor of two. The interactions between the foveal target and the flanking Gabor signals are spatial-frequency and orientation specific in both regions, but less specific in the suppression region.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global vision impairment due to uncorrected presbyopia.

            To evaluate the personal and community burdens of uncorrected presbyopia. We used multiple population-based surveys to estimate the global presbyopia prevalence, the spectacle coverage rate for presbyopia, and the community perception of vision impairment caused by uncorrected presbyopia. For planning purposes, the data were extrapolated for the future using population projections extracted from the International Data Base of the US Census Bureau. It is estimated that there were 1.04 billion people globally with presbyopia in 2005, 517 million of whom had no spectacles or inadequate spectacles. Of these, 410 million were prevented from performing near tasks in the way they required. Vision impairment from uncorrected presbyopia predominantly exists (94%) in the developing world. Uncorrected presbyopia causes widespread, avoidable vision impairment throughout the world. Alleviation of this problem requires a substantial increase in the number of personnel trained to deliver appropriate eye care together with the establishment of sustainable, affordable spectacle delivery systems in developing countries. In addition, given that people with presbyopia are at higher risk for permanently sight-threatening conditions such as glaucoma and diabetic eye disease, primary eye care should include refraction services as well as detection and appropriate referral for these and other such conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia.

              To evaluate the effects of perceptual learning on contrast-sensitivity function and visual acuity in adult observers with amblyopia, 23 anisometropic amblyopes with a mean age of 19.3 years were recruited and divided into three groups. Subjects in Group I were trained in grating detection in the amblyopic eye near pre-training cut-off spatial frequency. Group II received a training regimen of repeated contrast-sensitivity function measurements in the amblyopic eye. Group III received no training. We found that training substantially improved visual acuity and contrast-sensitivity functions in the amblyopic eyes of all the observers in Groups I and II, although no significant performance improvement was observed in Group III. For observers in Group I, performance improvements in the amblyopic eyes were broadly tuned in spatial frequency and generalized to the fellow eyes. The latter result was not found in Group II. In a few cases tested, improvements in visual acuity following training showed about 90% retention for at least 1 year. We concluded that the visual system of adult amblyopes might still retain substantial plasticity. Perceptual learning shows potential as a clinical tool for treating child and adult amblyopia.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 February 2012
                2012
                : 2
                : 278
                Affiliations
                [1 ]School of Optometry and Helen Wills Neuroscience Institute , UC Berkeley, Berkeley, CA
                [2 ]Faculty of Medicine, Goldshleger Eye Research Inst, Tel-Aviv University , Tel-Hashomer, Israel
                Author notes
                Article
                srep00278
                10.1038/srep00278
                3284862
                22363834
                0f359fee-f3d5-4bbc-af69-dce0d322e065
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 02 December 2011
                : 30 January 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article