40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management

      ,
      Blood Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chimeric antigen receptor (CAR) T-cell therapy is an effective new treatment for hematologic malignancies. Two CAR T-cell products are now approved for clinical use by the U.S. FDA: tisagenlecleucel for pediatric acute lymphoblastic leukemia (ALL) and adult diffuse large B-cell lymphoma subtypes (DLBCL), and axicabtagene ciloleucel for DLBCL. CAR T-cell therapies are being developed for multiple myeloma, and clear evidence of clinical activity has been generated. A barrier to widespread use of CAR T-cell therapy is toxicity, primarily cytokine release syndrome (CRS) and neurologic toxicity. Manifestations of CRS include fevers, hypotension, hypoxia, end organ dysfunction, cytopenias, coagulopathy, and hemophagocytic lymphohistiocytosis. Neurologic toxicities are diverse and include encephalopathy, cognitive defects, dysphasias, seizures, and cerebral edema. Our understanding of the pathophysiology of CRS and neurotoxicity is continually improving. Early and peak levels of certain cytokines, peak blood CAR T-cell levels, patient disease burden, conditioning chemotherapy, CAR T-cell dose, endothelial activation, and CAR design are all factors that may influence toxicity. Multiple grading systems for CAR T-cell toxicity are in use; a universal grading system is needed so that CAR T-cell products can be compared across studies. Guidelines for toxicity management vary among centers, but typically include supportive care, plus immunosuppression with tocilizumab or corticosteroids administered for severe toxicity. Gaining a better understanding of CAR T-cell toxicities and developing new therapies for these toxicities are active areas of laboratory research. Further clinical investigation of CAR T-cell toxicity is also needed. In this review, we present guidelines for management of CRS and CAR neurotoxicity.

          Related collections

          Author and article information

          Journal
          Blood Reviews
          Blood Reviews
          Elsevier BV
          0268960X
          November 2018
          November 2018
          Article
          10.1016/j.blre.2018.11.002
          6628697
          30528964
          0ee108e9-8ec5-4dcb-b92e-6567386dbb77
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article