2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

          Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications.

            The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications

                Bookmark

                Author and article information

                Journal
                Microchimica Acta
                Microchim Acta
                Springer Science and Business Media LLC
                0026-3672
                1436-5073
                February 2019
                January 9 2019
                February 2019
                : 186
                : 2
                Article
                10.1007/s00604-018-3175-x
                0e8f2111-c887-40a7-af95-3a8f0eb4b6d4
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,917

                Cited by20

                Most referenced authors588