4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ZmRPN1 confers quantitative variation in pollen number and boosts hybrid seed production in maize

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The number of pollen grains is a critical determinant of reproductive success in seed plants and varies among species and individuals. However, in contrast with many mutant‐screening studies relevant to anther and pollen development, the natural genetic basis for variations in pollen number remains largely unexplored. To address this issue, we carried out a genome‐wide association study in maize, ultimately revealing that a large presence/absence variation in the promoter region of ZmRPN1 alters its expression level and thereby contributes to pollen number variation. Molecular analyses showed that ZmRPN1 interacts with ZmMSP1, which is known as a germline cell number regulator, and facilitates ZmMSP1 localization to the plasma membrane. Importantly, ZmRPN1 dysfunction resulted in a substantial increase in pollen number, consequently boosting seed production by increasing female–male planting ratio. Together, our findings uncover a key gene controlling pollen number, and therefore, modulation of ZmRPN1 expression could be efficiently used to develop elite pollinators for modern hybrid maize breeding.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

            The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Trimmomatic: a flexible trimmer for Illumina sequence data

              Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                jhluo@cau.edu.cn
                yh352@cau.edu.cn
                Journal
                Plant Biotechnol J
                Plant Biotechnol J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                21 June 2023
                October 2023
                : 21
                : 10 ( doiID: 10.1111/pbi.v21.10 )
                : 1978-1989
                Affiliations
                [ 1 ] MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China China Agricultural University Beijing China
                Author notes
                [*] [* ] Correspondence (Tel +86‐010‐62732876; fax +86‐010‐62732876; email yh352@ 123456cau.edu.cn ; Tel +86‐010‐62732442; fax +86‐010‐62732442; email jhluo@ 123456cau.edu.cn )
                [ † ]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-3640-8502
                Article
                PBI14105 PBI-00228-2023.R1
                10.1111/pbi.14105
                10502757
                37341033
                0e75871e-43a8-4c75-a67b-0a49daf94cc4
                © 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 01 June 2023
                : 02 March 2023
                : 08 June 2023
                Page count
                Figures: 6, Tables: 0, Pages: 1989, Words: 10838
                Funding
                Funded by: Key Science and Technology Project of Liaoning Province
                Award ID: 2022JH1/10200001
                Funded by: National Key Research and Development Program of China , doi 10.13039/501100012166;
                Award ID: 2021YFD1201003
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                October 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.3 mode:remove_FC converted:15.09.2023

                Biotechnology
                maize,natural variation,pollen number,zmrpn1,zmmsp1
                Biotechnology
                maize, natural variation, pollen number, zmrpn1, zmmsp1

                Comments

                Comment on this article