3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A New Taxonomy for Postactivation Potentiation in Sport

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postactivation potentiation (PAP) mechanisms and responses have a long scientific history. However, to this day there is still controversy regarding the mechanisms underlying enhanced performance after a conditioning activity. More recently, the term postactivation performance enhancement (PAPE) has been proposed with differing associated mechanisms and protocols than with PAP. However, these 2 terms (PAP and PAPE) may not adequately describe all specific potentiation responses and mechanisms and can also be complementary, in some cases. Purpose: This commentary presents and discusses the similarities and differences between PAP and PAPE and, subsequently, elaborates on a new taxonomy for better describing performance potentiation in sport settings. Conclusion: The elaborated taxonomy proposes the formula “Post-[CONDITIONING ACTIVITY] [VERIFICATION TEST] potentiation in [POPULATION].” This taxonomy would avoid erroneous identification of isolated physiological attributes and provide individualization and better applicability of conditioning protocols in sport settings.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status.

          There is no clear agreement regarding the ideal combination of factors needed to optimize postactivation potentiation (PAP) after a conditioning activity. Therefore, a meta-analysis was conducted to evaluate the effects of training status, volume, rest period length, conditioning activity, and gender on power augmentation due to PAP. A total of 141 effect sizes (ESs) for muscular power were obtained from a total of 32 primary studies, which met our criteria of investigating the effects of a heavy preconditioning activity on power in randomized human trials. The mean overall ES for muscle power was 0.38 after a conditioning activity (p 85%) 0.31 (p 10 minutes (0.02) (p < 0.05). Significant differences were found between untrained 0.14 and athletes 0.81 and between trained 0.29 and athletes. The primary findings of this study were that a conditioning activity augmented power output, and these effects increased with training experience, but did not differ significantly between genders. Moreover, potentiation was optimal after multiple (vs. single) sets, performed at moderate intensities, and using moderate rest periods lengths (7-10 minutes).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis.

            Although post-activation potentiation (PAP) has been extensively examined following the completion of a conditioning activity (CA), the precise effects on subsequent jump, sprint, throw, and upper-body ballistic performances and the factors modulating these effects have yet to be determined. Moreover, weaker and stronger individuals seem to exhibit different PAP responses; however, how they respond to the different components of a strength-power-potentiation complex remains to be elucidated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues

              Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered.
                Bookmark

                Author and article information

                Journal
                International Journal of Sports Physiology and Performance
                Human Kinetics
                1555-0265
                1555-0273
                September 1 2020
                September 1 2020
                : 15
                : 8
                : 1197-1200
                Article
                10.1123/ijspp.2020-0350
                32820135
                0e74622d-3afe-42ae-a32e-6d4efa470ab0
                © 2020
                History

                Comments

                Comment on this article