20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Accurate characterization of extravascular lung water in acute respiratory distress syndrome.

      Critical Care Medicine
      Adult, Aged, Body Height, Body Weight, Cohort Studies, Early Diagnosis, Extravascular Lung Water, metabolism, Female, Hospital Mortality, Humans, Intensive Care, Male, Middle Aged, Oxygen, blood, Predictive Value of Tests, Prognosis, Prospective Studies, Pulmonary Edema, diagnosis, mortality, Respiratory Distress Syndrome, Adult, Statistics as Topic, Thermodilution

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Measurements of extravascular lung water (EVLW) correlate to the degree of pulmonary edema and have substantial prognostic information in critically ill patients. Prior studies using single indicator thermodilution have reported that 21% to 35% of patients with clinical acute respiratory distress syndrome (ARDS) have normal EVLW (<10 mL/kg). Given that lung size is independent of actual body weight, we sought to determine whether indexing EVLW to predicted or adjusted body weight affects the frequency of increased EVLW in patients with ARDS. Prospective, observational cohort study. Medical and surgical intensive care units at two academic hospitals. Thirty patients within 72 hrs of meeting American-European Consensus Conference definition of ARDS and 14 severe sepsis patients without ARDS. None. EVLW was measured for 7 days by PiCCO transpulmonary thermodilution; 225 measurements of EVLW indexed to actual body weight (ActBW) were compared with EVLW indexed to predicted body weight (PBW) and adjusted body weight (AdjBW). Mean EVLW indexed to ActBW was 12.7 mg/kg for ARDS patients and 7.8 mg/kg for non-ARDS sepsis patients (p < .0001). In all patients, EVLW increased an average of 1.1 +/- 2.1 mL/kg when indexed to AdjBW and 2.0 +/- 4.1 mL/kg when indexed to PBW. Indexing EVLW to PBW or AdjBW increased the proportion of ARDS patients with elevated EVLW (each p < .05) without increasing the frequency of elevated EVLW in non-ARDS patients. EVLW indexed to PBW had a stronger correlation to Lung Injury Score (r2 = .39 vs. r2 = .17) and PaO2/FiO2 ratio (r2 = .25 vs. r2 = .10) than did EVLW indexed to ActBW. Indexing EVLW to PBW or AdjBW reduces the number of ARDS patients with normal EVLW and correlates better to Lung Injury Score and oxygenation than using ActBW. Studies are needed to confirm the presumed superiority of this method for diagnosing ARDS and to determine the clinical treatment implications.

          Related collections

          Author and article information

          Comments

          Comment on this article