17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Organic Wastes and Industrial By-Products to Produce Filamentous Fungi with Potential as Aqua-Feed Ingredients

      , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organic-rich waste and industrial by-product streams, generated in enormous amounts on a daily basis, contain substantial amounts of nutrients that are worthy of recovery. Biological conversion of organic-waste streams using filamentous fungi is a promising approach to convert nutrients into value-added bioproducts, such as fungal biomass. High-protein fungal biomass contains different kinds and levels of amino acids, fatty acids, immunostimulants, antioxidants, pigments, etc., which make it a potential choice for application in animal feed supplementation. Considering the challenges long faced by the aquaculture industry in fishmeal production due to the increasing prices and environmental concerns, the aquaculture industry is forced to provide alternative protein-rich sources to replace conventional fishmeal. In this review, the possibilities of utilization of filamentous fungi biomass cultivated on organic-rich waste streams, as an alternative nutrient source in fish feed, were thoroughly reviewed.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: not found
          • Article: not found

          Expanding the utilization of sustainable plant products in aquafeeds: a review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fungal Diversity Revisited: 2.2 to 3.8 Million Species.

            The question of how many species of Fungi there are has occasioned much speculation, with figures mostly posited from around half a million to 10 million, and in one extreme case even a sizable portion of the spectacular number of 1 trillion. Here we examine new evidence from various sources to derive an updated estimate of global fungal diversity. The rates and patterns in the description of new species from the 1750s show no sign of approaching an asymptote and even accelerated in the 2010s after the advent of molecular approaches to species delimitation. Species recognition studies of (semi-)cryptic species hidden in morpho-species complexes suggest a weighted average ratio of about an order of magnitude for the number of species recognized after and before such studies. New evidence also comes from extrapolations of plant:fungus ratios, with information now being generated from environmental sequence studies, including comparisons of molecular and fieldwork data from the same sites. We further draw attention to undescribed species awaiting discovery in biodiversity hot spots in the tropics, little-explored habitats (such as lichen-inhabiting fungi), and material in collections awaiting study. We conclude that the commonly cited estimate of 1.5 million species is conservative and that the actual range is properly estimated at 2.2 to 3.8 million. With 120,000 currently accepted species, it appears that at best just 8%, and in the worst case scenario just 3%, are named so far. Improved estimates hinge particularly on reliable statistical and phylogenetic approaches to analyze the rapidly increasing amount of environmental sequence data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Good genes, oxidative stress and condition-dependent sexual signals.

              The immune and the detoxication systems of animals are characterized by allelic polymorphisms, which underlie individual differences in ability to combat assaults from pathogens and toxic compounds. Previous studies have shown that females may improve offspring survival by selecting mates on the basis of sexual ornaments and signals that honestly reveal health. In many cases the expression of these ornaments appears to be particularly sensitive to oxidative stress. Activated immune and detoxication systems often generate oxidative stress by an extensive production of reactive metabolites and free radicals. Given that tolerance or resistance to toxic compounds and pathogens can be inherited, female choice should promote the evolution of male ornaments that reliably reveal the status of the bearers' level of oxidative stress. Hence, oxidative stress may be one important agent linking the expression of sexual ornaments to genetic variation in fitness-related traits, thus promoting the evolution of female mate choice and male sexual ornamentation, a controversial issue in evolutionary biology ever since Darwin.
                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                September 2018
                September 14 2018
                : 10
                : 9
                : 3296
                Article
                10.3390/su10093296
                0e37555a-efe3-4c31-bd7b-028c0264c1f9
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article