0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Factors That Affect Asymmetric Mandibular Growth—A Systematic Review

      , ,
      Symmetry
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Facial asymmetry is a feature that occurs to a greater or lesser extent in the general population. As its severity is usually slight, facial asymmetry may not be noticeable to the patient. However, there are cases when severe facial asymmetry not only affects the facial aesthetics by distorting facial proportions, but also contributes to problems related to the function of the stomatognathic system. The nodal signalling pathway appears to be of particular importance in the process of mandibular asymmetry, as it affects not only structures formed from the first pharyngeal arch, but also other organs, such as the heart and lungs. Following the evaluation of the available literature, the inheritance of mandibular asymmetry is a very complex and multifactorial process, and the genes whose altered expression appears to be a more important potential aetiological factor for asymmetry include PITX2, ACTN3, ENPP1 and ESR1. This systematic review attempts to systematise the available literature concerning the impact of signalling pathway disruption, including the disruption of the nodal signalling pathway, on the development of mandibular asymmetry.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SYRCLE’s risk of bias tool for animal studies

          Background Systematic Reviews (SRs) of experimental animal studies are not yet common practice, but awareness of the merits of conducting such SRs is steadily increasing. As animal intervention studies differ from randomized clinical trials (RCT) in many aspects, the methodology for SRs of clinical trials needs to be adapted and optimized for animal intervention studies. The Cochrane Collaboration developed a Risk of Bias (RoB) tool to establish consistency and avoid discrepancies in assessing the methodological quality of RCTs. A similar initiative is warranted in the field of animal experimentation. Methods We provide an RoB tool for animal intervention studies (SYRCLE’s RoB tool). This tool is based on the Cochrane RoB tool and has been adjusted for aspects of bias that play a specific role in animal intervention studies. To enhance transparency and applicability, we formulated signalling questions to facilitate judgment. Results The resulting RoB tool for animal studies contains 10 entries. These entries are related to selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. Half these items are in agreement with the items in the Cochrane RoB tool. Most of the variations between the two tools are due to differences in design between RCTs and animal studies. Shortcomings in, or unfamiliarity with, specific aspects of experimental design of animal studies compared to clinical studies also play a role. Conclusions SYRCLE’s RoB tool is an adapted version of the Cochrane RoB tool. Widespread adoption and implementation of this tool will facilitate and improve critical appraisal of evidence from animal studies. This may subsequently enhance the efficiency of translating animal research into clinical practice and increase awareness of the necessity of improving the methodological quality of animal studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better?

            Methodological quality (risk of bias) assessment is an important step before study initiation usage. Therefore, accurately judging study type is the first priority, and the choosing proper tool is also important. In this review, we introduced methodological quality assessment tools for randomized controlled trial (including individual and cluster), animal study, non-randomized interventional studies (including follow-up study, controlled before-and-after study, before-after/ pre-post study, uncontrolled longitudinal study, interrupted time series study), cohort study, case-control study, cross-sectional study (including analytical and descriptive), observational case series and case reports, comparative effectiveness research, diagnostic study, health economic evaluation, prediction study (including predictor finding study, prediction model impact study, prognostic prediction model study), qualitative study, outcome measurement instruments (including patient - reported outcome measure development, content validity, structural validity, internal consistency, cross-cultural validity/ measurement invariance, reliability, measurement error, criterion validity, hypotheses testing for construct validity, and responsiveness), systematic review and meta-analysis, and clinical practice guideline. The readers of our review can distinguish the types of medical studies and choose appropriate tools. In one word, comprehensively mastering relevant knowledge and implementing more practices are basic requirements for correctly assessing the methodological quality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cranial neural crest cells on the move: their roles in craniofacial development.

              The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders. Copyright © 2010 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SYMMAM
                Symmetry
                Symmetry
                MDPI AG
                2073-8994
                March 2022
                February 28 2022
                : 14
                : 3
                : 490
                Article
                10.3390/sym14030490
                0e150233-925c-46ea-9de1-89d52bd24af2
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article