5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization

            Abstract This article describes several features in the MAFFT online service for multiple sequence alignment (MSA). As a result of recent advances in sequencing technologies, huge numbers of biological sequences are available and the need for MSAs with large numbers of sequences is increasing. To extract biologically relevant information from such data, sophistication of algorithms is necessary but not sufficient. Intuitive and interactive tools for experimental biologists to semiautomatically handle large data are becoming important. We are working on development of MAFFT toward these two directions. Here, we explain (i) the Web interface for recently developed options for large data and (ii) interactive usage to refine sequence data sets and MSAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

              Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                June 2022
                June 2022
                : 826
                : 154227
                Article
                10.1016/j.scitotenv.2022.154227
                35240185
                0dfddefb-6173-454a-8280-1beb6a540472
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article