23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteria-Killing Type IV Secretion Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria have been constantly competing for nutrients and space for billions of years. During this time, they have evolved many different molecular mechanisms by which to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial and eukaryotic cells. These processes often employ large multimeric transmembrane nanomachines that have been classified as types I–IX secretion systems. One of the most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have been shown to be able to secrete macromolecules directly into both eukaryotic and prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer from one bacterium to another was restricted to protein-DNA complexes during bacterial conjugation. This view changed when it was shown by our group that many Xanthomonas species carry a T4SS that is specialized to transfer toxic bacterial effectors into rival bacterial cells, resulting in cell death. This review will focus on this special subtype of T4SS by describing its distinguishing features, similar systems in other proteobacterial genomes, and the nature of the effectors secreted by these systems and their cognate inhibitors.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Type VI secretion delivers bacteriolytic effectors to target cells

          Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enyzmes by the outer membrane. Here we show that the type VI secretion system (T6SS) of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyze peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa utilizes specific periplasmically-localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active T6SS, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological diversity of prokaryotic type IV secretion systems.

              Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                21 May 2019
                2019
                : 10
                : 1078
                Affiliations
                [1] 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo, Brazil
                [2] 2Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP) , Campinas, Brazil
                Author notes

                Edited by: Ignacio Arechaga, University of Cantabria, Spain

                Reviewed by: Elisabeth Grohmann, Beuth Hochschule für Technik Berlin, Germany; Xiancai Rao, Army Medical University, China

                *Correspondence: Chuck S. Farah, chsfarah@ 123456iq.usp.br

                These authors have contributed equally to this work

                Present address: Diorge P. Souza, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom Ethel Bayer-Santos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01078
                6536674
                31164878
                0df96e0f-0b56-4d45-b2fb-acbf18501fed
                Copyright © 2019 Sgro, Oka, Souza, Cenens, Bayer-Santos, Matsuyama, Bueno, dos Santos, Alvarez-Martinez, Salinas and Farah.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 March 2019
                : 29 April 2019
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 136, Pages: 20, Words: 0
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Categories
                Microbiology
                Review

                Microbiology & Virology
                bacterial competition,xanthomonadales,type iv immunity protein,type iv secretion effector,type iv secretion system,x-tfe,x-tfi,x-t4ss

                Comments

                Comment on this article