10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico

      , ,
      Marine Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.

          The alpha-proteobacterial lineage that contains SAR11 and related ribosomal RNA gene clones was among the first groups of organisms to be identified when cultivation-independent approaches based on rRNA gene cloning and sequencing were applied to survey microbial diversity in natural ecosystems. This group accounts for 26% of all ribosomal RNA genes that have been identified in sea water and has been found in nearly every pelagic marine bacterioplankton community studied by these methods. The SAR11 clade represents a pervasive problem in microbiology: despite its ubiquity, it has defied cultivation efforts. Genetic evidence suggests that diverse uncultivated microbial taxa dominate most natural ecosystems, which has prompted widespread efforts to elucidate the geochemical activities of these organisms without the benefit of cultures for study. Here we report the isolation of representatives of the SAR11 clade. Eighteen cultures were initially obtained by means of high-throughput procedures for isolating cell cultures through the dilution of natural microbial communities into very low nutrient media. Eleven of these cultures have been successfully passaged and cryopreserved for future study. The volume of these cells, about 0.01 micro m(3), places them among the smallest free-living cells in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?

            The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts.

              Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S-) grazer-free seawater samples, and shifts in community composition and per cell DNA and protein content were compared with untreated controls. In addition, starvation survival experiments were performed on selected isolates. Incubations resulted in rapid community shifts towards typical culturable genera rather than in the activation of either dormant cells or the original DNA-rich bacterial fraction. Vibrio spp. and members of the Alteromonas/Colwellia cluster (A/C) were selectively enriched in S+ and S-, respectively, and this trend was even magnified by the addition of NA. These increases corresponded with the rise of cell populations with distinctively different but generally higher protein and DNA content in the various treatments. Uncultured dominant gamma-proteobacteria affiliating with the SAR86 cluster and members of the culturable genus Oceanospirillum were not enriched or activated, but there was no indication of substrate-induced cell death, either. Strains of Vibrio and A/C maintained high ribosome levels in pure cultures during extended periods of starvation, whereas Oceanospirillum spp. did not. The life strategy of rapidly enriched culturable gamma-proteobacteria could thus be described as a "feast and famine" existence involving different activation levels of substrate concentration.
                Bookmark

                Author and article information

                Journal
                Marine Biology
                Marine Biology
                Springer Nature
                0025-3162
                1432-1793
                November 2004
                June 30 2004
                November 2004
                : 145
                : 6
                : 1213-1225
                Article
                10.1007/s00227-004-1406-7
                0de44cc9-9280-4833-8a6e-a5d5f6fd97a5
                © 2004
                History

                Comments

                Comment on this article